The Characteristics of COSMIC Radio Occultation Data Biases over Qinghai-Tibetan Plateau

  • YU Xiaojia ,
  • YANG Shengpeng ,
  • JIANG Xi
Expand
  • Joint Center for Data Assimilation Research and Application, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China;College of Atmospheric Science, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China

Received date: 2018-08-28

  Online published: 2019-04-28

Abstract

COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) RO (Radio Occutaion) data are collocated in space and time with ECMWF (European Centre for Medium-Range Weather Forecasts) analyses during 7 year period from 2007 to 2013 over Qinghai-Tibetan Plateau and its surrounding areas. Atmospheric refractivity, temperature and relative humidity derived from COSMIC GPS ROs are compared with those of the ECMWF analysis. It is found the COSMIC GPS RO refractivity observations are systematically greater than the refractivity calculated from ECMWF analyses in summer and autumn. The fractional refractivity bias over Qinghai-Tibetan Plateau is larger than that over southwest monsoon area and plain with the value of 0.7%. In winter and spring the refractivity bias over Qinghai-Tibetan Plateau is positive, while that over southwest monsoon area and plain is negative. Temperature and water vapor of GPS RO are derived from refractivity. The positive bias of refractivity is highly correlated with positive water vapor bias and negative temperature bias. The bias of relative humidity and temperature are 7% and 0.5℃, respectively over Qinghai-Tibetan Plateau. It is noted that relative humidity bias can reach 11% at the top of troposphere over southwest monsoon area.The lower tropospheric negative refractivity biases are related to the multi-path effect, and the positive biases in the middle and lower troposphere are the result of the influence of cloud. The occurrence of relative humidity bias near the tropopause is due to the inaccuracy of the ECMWF mode results.

Cite this article

YU Xiaojia , YANG Shengpeng , JIANG Xi . The Characteristics of COSMIC Radio Occultation Data Biases over Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2019 , 38(2) : 288 -298 . DOI: 10.7522/j.issn.1000-0534.2018.00162

References

[1]Anthes R A, Bernhardt P A, Chen Y, et al, 2008. The COSMIC/FORMOSAT-3-Mission early results[J]. Bulletin of Then American Meteorological Society, 89(3):313-333. DOI:10.1175/BAMS-89-3-313.
[2]Anthes R A, 2011. Exploring Earth's atmosphere with radio occultation:contributions to weather, climate and space weather[J]. Atmospheric Measurement Techniques, 4(6):1077-1103. DOI:10.5194/amt-4-1077-2011.
[3]Bao X, Zhang F, 2013. Evaluation of NCEP-CFSR, NCEP-NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau[J]. Journal of Climate, 26(1):206-214. DOI:10.1175/JCLI-D-12-00056.1.
[4]Boos W R, Kuang Z, 2010. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating[J]. Nature, 463(7278):218-222. DOI:10.1038/nature08707.
[5]Borsche M, Kirchengast G, Foelsche U, 2007. Tropical tropopause climatology as observed with radio occultation measurements from CHAMP compared to ECMWF and NCEP analyses[J]. Geophysical Research Letters, 34(3):L03702. DOI:10.1029/2006GL027918.
[6]Chen X L, Ma Y M, Kelder H, et al, 2011. On the behaviour of the tropopause folding events over the Tibetan Plateau[J]. Atmospheric Chemistry and Physics, 11(10):5113-5122. DOI:10.5194/acp-11-5113-2011.
[7]Duan A M, Wu G X, 2005. Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia[J]. Climate Dynamics, 24(7-8):793-807. DOI:10.1007/s00382-004-0488-8.
[8]Feng S, Fu Y, Xiao Q, 2011. Is the tropopause higher over the Tibetan Plateau? Observational evidence from Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) data[J]. Journal of Geophysical Research Atmospheres, 116(D21):21121. DOI:10.1029/2011JD016140.
[9]Foelsche U, Borsche M, Steiner A K, et al, 2008. Observing upper troposphere-lower stratosphere climate with radio occultation data from the CHAMP satellite[J]. Climate Dynamics, 31(1):49-65. DOI:10.1007/s00382-007-0337-7.
[10]Forster P M D F, Shine K P, 1999. Stratospheric water vapour changes as a possible contributor to observed stratospheric cooling[J]. Geophysical Research Letters, 26(21):3309-3312. DOI:10.1029/1999GL010487.
[11]Fu R, Hu Y L, Wright J S, et al, 2006. Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau[J]. Proceedings of The National Academy of Sciences of The United States of America, 103(15):5664-5669. DOI:10.1073/pnas.0601584103.
[12]Hajj G A, Ao C O, Iijima B A, et al, 2002. CHAMP and SAC-C atmospheric occultation results and intercomparisons[J]. Journal of Geophysical Research Atmospheres, 109(D6):6109-6154. DOI:10.1029/2003JD003909.
[13]Ho S P, 2009. Estimating the uncertainty of using GPS radio occultation data for climate monitoring:Inter-comparison of CHAMP refractivity climate records 2002-2006 from different data centers[J]. Journal of Geophysical Research Atmospheres, 114(D23):1470-1478. DOI:10.1029/2009JD011969.
[14]Kursinski E R, Hajj G A, Bertiger W I, et al, 1996. Initial results of radio occultation observations of Earth's atmosphere using the global positioning system[J]. Science, 271(5252):1107-1110. DOI:10.1126/science.271.5252.1107.
[15]Kursinski E R, Hajj G A, Schofield J T, et al, 1997. Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System[J]. Journal of Geophysical Research Atmospheres, 102(D19):23429-23465. DOI:10.1126/science.271.5252.1107.
[16]Rocken C, Anthes R, Exner M, et al, 1997. Analysis and validation of GPS/MET data in the neutral atmosphere[J]. Journal of Geophysical Research Atmospheres, 1022(D25):29849-29866. DOI:10.1029/97JD02400.
[17]Rusticucci M M, Kousky E, 2002. A comparative study of maximum and minimum temperatures over Argentina:NCEP-NCAR reanalysis versus station data[J]. Journal of Climate, 15(15):2089-2101. DOI:10.1175/1520-0442(2002)015<2089:acsoma>2.0.co;2.
[18]Santer B D, Sausen R, Wigley T M L, et al, 2003. Behavior of tropopause height and atmospheric temperature in models, reanalyses, and observations:Decadal changes[J]. Journal of Geophysical Research Atmospheres, 108(D1):4002. DOI:10.1029/2002jd002258.
[19]Smith S R, Legler D M, Verzone K V, 2001. Quantifying uncertainties in NCEP reanalyses using high-quality research vessel observations[J]. Journal of Climate, 14(20):4062-4072. DOI:10.1175/1520-0442(2001)0142.0.CO;2.
[20]Sokolovskiy S, 2003. Effect of superrefraction on inversions of radio occultation signals in the lower troposphere[J]. Radio Science, 38(3):1058. DOI:10.1029/2002rs002728.
[21]Son S, Tandon N F, Polvani L M, 2011. The fine-scale structure of the global tropopause derived from COSMIC GPS radio occultation measurements[J]. Journal of Geophysical Research Atmospheres, 116(D2):D20113. DOI:10.1029/2011JD016030.
[22]Steiner A K, Kirchengast G, Ladreiter H P, 1998. Inversion, error analysis, and validation of GPS/MET occultation data[J]. Annales Geophysicae, 17(1):122-138. DOI:10.1007/s00585-999-0122-5.
[23]Steiner A K, Lackner B C, Ladst?dter F, 2011. GPS radio occultation for climate monitoring and change detection[J]. Radio Science, 46(6):RS0D24. DOI:10.1029/2010RS004614.
[24]Tian H, Tian W, Luo J, et al, 2017. Climatology of cross-tropopause mass exchange over the Tibetan Plateau and its surroundings[J]. International Journal of Climatology, 37(11):3999-4014. DOI:10.1002/joc.4970.
[25]Wang A, Zeng X, 2012. Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau[J]. Journal of Geophysical Research Atmospheres, 117(D5):D05102. DOI:10.1029/2011JD016553.
[26]Ware R, Rocken C, Solheim F, et al, 1996. GPS sounding of the atmosphere from low earth orbit:Preliminary Results[J]. Journal of Geophysical Research Atmospheres, 77(1):19-40. DOI:10.1175/1520-0477(1996)077<0019:GSOTAF>2.0.CO;2.
[27]Wickert J, Reigber C, Beyerle G, et al, 2001. Atmosphere sounding by GPS radio occultation:First results from CHAMP[J]. Geophysical Research Letters, 28(17):3263-3266. DOI:10.1029/2001GL013117.
[28]Wickert J, Schmidt T, Beyerle G, et al, 2004. The radio occultation experiment aboard CHAMP:Operational data analysis and validation of vertical atmospheric profiles[J]. Journal of the Meteorological Society of Japan, 82(1B):381-395. DOI:10.2151/jmsj.2004.381.
[29]World Meteorological Organization, 1957. Meteorology-A three dimensional science, WMO Bull[S]. 6: 134-138, Geneva, Switzerland.
[30]Xu X, Lu C, Shi X, et al, 2008. World water tower:An atmospheric perspective[J]. Geophysical Research Letters, 35(20):525-530. DOI:10.1029/2008GL035867.
[31]Yang K, Wu H, Qin J, et al, 2014. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle:A review[J]. Global & Planetary Change, 112(1):79-91. DOI:10.1016/j.gloplacha.2013.12.001.
[32]Yang S, Zou X, 2012. Assessments of cloud liquid water contributions to GPS radio occultation refractivity using measurements from COSMIC and CloudSat[J]. Journal of Geophysical Research Atmospheres, 117(D6):D06219. DOI:10.1029/2011JD016452.
[33]Yang S, Zou X, 2013. Temperature profiles and lapse rate climatology in altostratus and nimbostratus clouds derived from GPS RO Data[J]. Journal of Climate, 26(16):6000-6014. DOI:10.1175/JCLI-D-12-00646.1.
[34]Yang S, Zou X, 2017a. Dependence of positive refractivity bias of GPS RO cloudy profiles on cloud fraction along GPS RO limb tracks[J]. Gps Solutions, 21(2):499-509. DOI:10.1007/s10291-016-0541-1.
[35]Yang S, Zou X, 2017b. Lapse rate characteristics in ice clouds inferred from GPS RO and CloudSat observations[J]. Atmospheric Research, 197(1):105-112. DOI:10.1016/j.atmosres.2017.06.024.
[36]You Q, Fraedrich K, Ren G, et al, 2013. Variability of temperature in the Tibetan Plateau based on homogenized surface stations and reanalysis data[J]. International Journal of Climatology, 33(6):1337-1347. DOI:10.1002/joc.3512.
[37]Zhan R F, Li J P, 2007. Influence of atmospheric heat sources over the Tibetan Plateau and the Tropical Western North Pacific on the Inter-Decadal Variations of the Stratosphere-Troposphere Exchange (STE) of Water Vapor[J]. Science in China Series D-earth Sciences, 51(8):1179-1193. DOI:10.1007/s11430-008-0082-8.
[38]Zhao T B, Fu C B, 2006. Comparison of products from ERA-40, NCEP-2, and CRU with station data for summer precipitation over China[J]. Advances in Atmospheric Sciences, 23(4):593-604. DOI:10.1007/s00376-006-0593-1.
[39]Zou X, Zeng Z, 2006. A quality control procedure for GPS radio occultation data[J]. Journal of Geophysical Research Atmospheres, 111(D2):D02112. DOI:10.1029/2005JD005846.
[40]Zou X, Vandenberghe F, Wang B, et al, 1999. A ray-tracing operator and its adjoint for the use of GPS/MET refraction angle measurements[J]. Journal of Geophysical Research Atmospheres, 104(D18):22301-22318. DOI:10.1029/1999JD900450.
[41]Zou X, Yang S, Ray P S, 2012. Impacts of ice clouds on GPS radio occultation measurements[J]. Journal of the Atmospheric Sciences, 69(69):3670-3682. DOI:10.1175/jas-d-11-0199.1.
[42]郝民, 郭英华, 马再忠, 2010.一次降水天气过程的GPS掩星资料在GSI同化系统中的应用研究[J].高原气象, 29(1):164-174.
[43]何金海, 徐海明, 钟珊珊, 等, 2011.青藏高原大气热源特征及其影响和可能机制[M].北京:气象出版社, 243.
[44]敬文琪, 崔园园, 刘瑞霞, 等, 2017.影响长江中下游夏季降水的青藏高原水汽抽吸作用和水汽路径的定量化研究[J].高原气象, 36(4):900-911. DOI:10.7522/j.issn.1000-0534.2016.00084.
[45]刘维成, 张强, 傅朝, 2017.近55年来中国西北地区降水变化特征及影响因素分析[J].高原气象, 36(6):1533-1545. DOI:10.7522/j.issn.1000-0534.2017.00081.
[46]马玉芬, 李曼, 史莲梅, 2013.单个掩星事件湿度场资料同化实验[J].干旱区研究, 30(6):1113-1121. DOI:10.13866/j.azr.2013.06.028.
[47]钱正安, 宋敏红, 吴统文, 等, 2017.世界干旱气候研究动态及进展综述(Ⅰ):若干主要干旱区国家的研究动态及联合国的贡献[J].高原气象, 36(6):1433-1456. DOI:10.7522/j.issn.1000-0534.2017.00075.
[48]孙颖, 丁一汇, 2002.青藏高原热源异常对1999年东亚夏季风异常活动的影响[J].大气科学, 26(6):817-828. DOI:10.3878/j.issn.1006-9895.2002.06.10.
[49]吴国雄, 张永生, 1998.青藏高原的热力和机械强迫作用以及亚洲季风的爆发:Ⅰ.爆发地点[J].大气科学, 22(6):825-838. DOI:10.3878/j.issn.1006-9895.1998.06.03.
[50]夏昕, 任荣彩, 吴国雄, 等, 2016.青藏高原周边对流层顶的时空分布、热力成因及动力效应分析[J].气象学报, 74(4):525-541. DOI:10.11676/qxxb2016.036.
[51]徐桂荣, 乐新安, 张文刚, 等, 2016. COSMIC掩星资料反演青藏高原大气廓线与探空观测的对比分析[J].暴雨灾害, 35(4):315-325. DOI:10.3969/j.issn.1004-9045.2016.04.003.
Outlines

/