Based on the BP-CCA method and the results of state-of-the-art climate prediction models, this paper discusses how to establish a statistical downscaling model with high predictive skills for summer precipitation in southwest China, and also investigates the predictability sources of the statistical downscaling mode. The predictive ability of the statistical downscaling model taking tropical sea surface temperature as the predictor is superior to that of 500 hPa geopotential height in Asia and the tropics as the predictor. When taking the tropical sea surface temperature as predictor, the predictive ability of statistical downscaling model is highly influenced by the second EOF mode of the tropical sea surface temperature, which is characterized by positive loading values in the tropical South-East Indian and Western Pacific regions, and negative loading centers in the tropical Middle and East Pacific region. This mode of the tropical sea surface temperature is highly correlated with the convection over Philippine Sea and the western Maritime Continent, which plays an important role in the Southwest China summer precipitation. The ECMWF and NCEP climate prediction model has high predictability of the second EOF mode of the tropical sea surface temperature. This feature helps to enhance the predictability of summer precipitation in Southwest China from the statistical downscaling model that taking the tropical sea surface temperature as the predictor.
[1]Adler R F, Huffman G J, Chang A, et al. 2003. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present)[J]. Journal Hydrometeorol, 4(6):1147.
[2]Dee D P, Uppala S M, Simmons A J, et al. 2011. The ERA-Interim reanalysis:configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society, 137:553-597.
[3]Ding R Q, Li J P. 2012. Influences of ENSO teleconnection on the persistence of sea surface temperature in the tropical Indian Ocean[J]. Journal of Climate, 25:8177-8195, doi:10.1175/JCLI-D-11-00739.1.
[4]Jiang X W, Li Y Q, Yang S, et al. 2015. Interannual variation of mid-summer heavy rainfall in the eastern edge of the Tibetan Plateau[J]. Climate Dynamics, 45(11-12):3091-3102.
[5]Jiang X W, Shu J C, Wang X, et al. 2017. The roles of convection over the western maritime continent and the philippine sea in interannual variability of summer rainfall over southwest china[J]. Journal of Hydrometeorology, 18(7):2043-2056.
[6]Kumar A, Chen M Y, Wang W Q. 2013. Understanding Prediction Skill of Seasonal Mean Precipitation over the Tropics[J]. Journal of Climate, 26(15), 5674-5681.
[7]Nitta T, Hu Z Z. 1996. Summer climate variability in China and its association with 500 hPa height and tropical convection[J]. Journal of The Meteorological Society of Japan, 74:425-445.
[8]Ren H L, Jin F D, Song L C, et al. 2017. Prediction of primary climate variability modes at the beijing climate center[J]. Journal of Meteorological Research, 31(1), 204-223, doi:10.1007/s13351-017-6097-3.
[9]Richter I, DoiT, Behera S K, et al. 2018. On the link between mean state biases and prediction skill in the tropics:an atmospheric perspective[J]. Climate Dynamics, 50(9-10):3355-3374.
[10]Zuo J Q, Ren H L, Wu J, et al. 2016. Subseasonal variability and predictability of the Arctic Oscillation/North Atlantic Oscillation in BCC_AGCM2.2[J]. Dynamics of Atmospheres and Oceans, 75:33-45.
[11]陈丽娟, 李维京, 张培群, 等. 2003.降尺度技术在月降水预报中的应用[J].应用气象学报, 14(6):648-655. DOI:10.3969/j. issn. 1001-7313.2003.06.002.
[12]陈丽娟, 顾伟宗, 伯忠凯, 等. 2017.黄淮地区夏季降水的统计降尺度预[J].应用气象学报, 28(2):129-141. DOI:10.11898/1001-7313.20170201.
[13]陈鹏翔, 江志红, 彭冬梅. 2017.基于BP-CCA统计降尺度的中亚春季降水的多模式集合模拟与预估[J].气象学报, 75(2):236-247. DOI:10.11676/qxxb2017.017.
[14]陈丹, 周长艳, 熊光明, 等. 2018.近53年四川盆地夏季暴雨变化特征分析[J].高原气象, 37 (1):197-206. DOI:10.7522/j. issn. 1000-0534.2017.00022.
[15]邓国卫, 孙俊, 阮贵宾, 等. 2017.四川省暴雨洪涝灾情特征及主汛期环流背景分析[J].高原气象, 36 (6):1521-1532. DOI:10.7522/j. issn. 1000-0534.2016.00099.
[16]顾伟宗, 陈丽娟, 李维京, 等. 2012.降尺度方法在中国不同区域夏季降水预测中的应用[J].气象学报, 70(2):202-212. DOI:10.11676/qxxb2012.020.
[17]黄玮, 程建刚, 王学锋, 等. 2013.基于气候模式的动力-统计降尺度技术在云南降水预测中的应用[J].云南大学学报:自然科学版, 35(6):782-790. DOI:10.7540/j. ynu. 20120078.
[18]贾小龙, 陈丽娟, 李维京, 等. 2010. BP-CCA方法用于中国冬季温度和降水的可预报性研究和降尺度季节预测[J].气象学报, 68(3):398-410. DOI:10.11676/qxxb2010.039.
[19]贾小龙, 陈丽娟, 高辉, 等. 2013.我国短期气候预测技术进展[J].应用气象学报, (6):641-655. DOI:10.3969/j. issn. 1001-7313.2013.06.001.
[20]李春晖, 林爱兰, 谷德军, 等. 2012.基于CFS预报产品的广东省季节降水统计降尺度预测[J].热带气象学报, 28(6):797-808.10.3969/j. issn. 1004-4965.2012.06.002.
[21]李永华, 徐海明, 刘德. 2009.2006年夏季西南地区东部特大干旱及其大气环流异常[J].气象学报, (1):122-132. DOI:10.3321/j. issn:0577-6619.2009.01.013.
[22]李跃清, 张琪. 2014.西南地区夏季云量与降水的关系特征分析[J].自然资源学报, 29(3):441-453. DOI:10.11849/zrzyxb. 2014.03.008.
[23]李泽明, 陈皎, 董新宁. 2014.重庆2011年和2006年夏季严重干旱及环流特征的对比分析[J].西南大学学报(自然科学版), 36(8):113-122.
[24]刘长征, 杜良敏, 柯宗建, 等. 2013.国家气候中心多模式解释应用集成预测[J].应用气象学报, (6):677-685. DOI:10.11898/1001-7313.20130604.
[25]龙妍妍, 范广洲, 李飞, 等. 2018.高原夏季风对中国夏季极端降水的影响研究[J].高原气象, 37 (1):1-12. DOI:10.7522/j. issn. 1000-0534.2017.00010.
[26]马振锋. 2002.西南地区夏季降水预测模型[J].气象, 28(11):29-33. DOI:10.7519/j. issn. 1000-0526.2002.11.007.
[27]庞轶舒, 马振峰, 杨淑群, 等. 2017.盛夏高原季风指数的探讨及其对四川盆地降水的影响[J].高原气象, 36(4):886-899. DOI:10.7522/j. issn. 1000-0534.2016.00027.
[28]齐冬梅, 李英, 李跃清, 等. 2015.2006年高原夏季风强弱变化及其与西南地区东部夏季气温和降水的关系[J].干旱气象, 33(4):555-565. DOI:10.11755/j. issn. 1006-7639(2015)-04-0555.
[29]任宏利, 丑纪范. 2007.数值模式的预报策略和方法研究进展[J].地球科学进展, 22(4):376-385. DOI:10.3321/j. issn:1001-8166.2007.04.007.
[30]沈愈. 2008. EOF迭代降尺度方案及其在华东梅汛期降水预测中的应用[J].高原气象, 27(1):52-63.
[31]王顺久. 2017.青藏高原积雪变化及其对中国水资源系统影响研究进展[J].高原气象, 36(5):1153-1164. DOI:10.7522/j. issn. 1000-0534.2016.00117.
[32]魏凤英. 2007.现代气候统计诊断与预测技术[M].北京:气象出版社.
[33]伍清, 蒋兴文, 谢洁. 2017. CMIP5模式对西南地区气温的模拟能力评估[J].高原气象, 36 (2):358-370. DOI:10.7522/j. issn. 1000-0534.2016.00046.
[34]吴洪宝, 吴蕾. 2005.气候变率诊断和预测方法[M].北京:气象出版社.
[35]尹晗, 李耀辉. 2014.我国西南干旱研究最新进展综述[J].干旱气象, 31(1):182-193. DOI:10.11755/j. issn. 1006-7639(2013)-01-0182.
[36]张宇, 李耀辉, 魏林波, 等. 2013.南亚高压与西太平洋副热带高压对我国西南地区夏季降水异常的影响[J].干旱气象, 31(3):464-470. DOI:10.11755/j. issn. 1006-7639(2013)-03-0464.