Variations of Surface Roughness on Different Underlying Surface at Nagqu Area over the Qinghai-Tibetan Plateau

  • LIU Xiaoran ,
  • LI Maoshan ,
  • HU Wenbin
Expand
  • School of Atmospheric Sciences/Plateau Atmosphere and Environment Key Laboratory of Sichuan Province/Joint Laboratory of Climate and Environment Change, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China;Unit No.96751 of PLA, Dalian 116600, Liaoning, China

Received date: 2018-05-16

  Online published: 2019-04-28

Abstract

Using the MODIS satellite data and three site turbulent data of the Nagqu region in northern Qinghai-Tibetan plateau in 2008, 2010 and 2012, with the Massman inversion model and an independent method to determine aerodynamic surface roughness, calculate and analyze the dynamic change laws of aerodynamic roughness length and verify the inversion model.The results show that the aerodynamic roughness length has a dynamic monthly change.From February to August, Z0m increases constantly with the ablation of snow and vegetation growth, and the maximum value of sites reaches 4~5 cm.From September to February, due to the post-monsoon over the plateau, Z0m gradually decreased, and the values decreased to about 1~2 cm.Snowfall is the main reason why Z0m during this period is significantly lower than normal.The underlying surface can be divided into four categories according to the different values of Z0m:ice and snow, sparse grassland, lush grassland, and urban.Among them, sparse grassland and lush grassland account for 62.49% and 33.74% of underlying surface of the region respectively, and they are the main categories, whose Z0m fluctuate between 2~6 cm and 1~4 cm.The results obtained by the two calculation methods are positively related to each other.Due to the average sliding effect, the inversion results are smaller than the site calculation results.Overall, the way of calculating Z0m using satellite data in an inversion method is feasible and can be applied to improve the land surface model parameters, the accuracy of the model simulation, and better reveal the heat flux exchange.

Cite this article

LIU Xiaoran , LI Maoshan , HU Wenbin . Variations of Surface Roughness on Different Underlying Surface at Nagqu Area over the Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2019 , 38(2) : 428 -438 . DOI: 10.7522/j.issn.1000-0534.2018.00083

References

[1]Arino O, Ramos J, Kalogirou V, et al, 2010."Glob Cover 2009"[R].Edinburgh, UK: Proceedings of the living planet Symposium.
[2]Chen X L, Su Z B, Ma Y M, et al, 2013.An improvement of roughness height parameterization of the Surface Energy Balance System (SEBS) over the Tibetan Plateau[J].Journal of Applied Meteorology and Climatology, 52(3):607-622.DOI:10.1175/JAMC-D-12-056.1.
[3]Guan X D, Huang J P, Guo N, et al, 2009.Variability of soil moisture and its relationship with surface albedo and soil thermal parameters over the Loess Plateau[J].Advances in Atmospheric Sciences, 26(4):692-700.DOI:10.1007/s00376-009-8198-0.
[4]Irannejad P, Shao Y P, 1998.Description and validation of the atmosphere-land-surface interaction scheme (ALSIS) with HAPEX and Cabauw data[J].Global Planet Change, 19(1):87-114.DOI:10.1016/S0921-8181(98)00043-5.
[5]Jane Q, 2008.The third pole[J].Nature, 454(24):393-396.DOI:10.1038/454393a.
[6]Ma Y M, Tsukamoto O, Wang J M, et al, 2002.Analysis of aerodynamic and thermodynamic parameters on the grassy marshland surface of Tibetan Plateau[J].Progress in Natural Science, 12(1):36-40.DOI:10.1016/S0079-6425(01)00007-X.
[7]Massman W J, 1997.An analytical one-dimensional model of momentum transfer by vegetation of arbitrary structure[J].Boundary-Layer Meteorology, 83(3):407-421.DOI:10.1023/A:1000234813011.
[8]Massman W J, Weil J C, 1999.An analytical one-dimensional second-order closure model of turbulence statistics and the Lagrangian time scale within and above plant canopies of arbitrary structure[J].Boundary-Layer Meteorology, 91(1):81-107.DOI:10.1023/a:1001810204560.
[9]Monin A S, Obukhov A M, 1954.Basic laws of turbulent mixing in the atmosphere near the ground[J].Tr Akad Nauk SSSR Geofiz Inst, 24(15):163-187.
[10]Panosky H A, Dutton J A, 1984.Atmospheric Turbulence:Models and Methods for Engineering Applications[M].New York:John Wiley, 1-399.
[11]Shao Y P, 2000.Phtsics and Modeling of Wind Erosion[M].London:Kluwer Academic Publishers, 1-452.
[12]Stull B R, 1991.边界层气象学导论[M].北京:气象出版社, 1-737.
[13]Tao S Y, Chen, L S, Xu X D, et al, 1998.Progresses of the Theoretical Study in the Second Tibetan Plateau Experiment of Atmospheric Sciences(PartI)[M].Beijing:China Meteorological Press, 1-348.
[14]Wu G X, Zhang Y S, 1998.Tibetan Plateau forcing and timing of the Mon-soon onset over south Asia and the south China sea[J].Monthly Weather Review, 4(126):913-927.DOI:10.1175/1520-0493(1998)126<0913:TPFATT>2.0.CO;2.
[15]Xun X Y, Hu Z Y, Ma Y M, 2012.The dynamic plateau mon-soon index and its association with general circulation an omaliesming[J].Advances in Atmospheric Sciences, 29(6):1249-1263.DOI:10.1007/s00376-012-1125-9.
[16]Ye D Z, Wu G X, 1998.The role of heat source of the Tibetan Plateau in the general circulation[J].Meteorological and Atmospheric Physics, 67(1):181-198.DOI:10.1007/bf01277509.
[17]陈家宜, 王介民, 光田宁, 1993.一种确定地表粗糙度的独立方法[J].大气科学, 17(01):21-26.DOI:10.3878/j.issn.1006-9895.1993.01.03.
[18]除多, Basabta S, 王伟, 等, 2010.基于MODIS的西藏高原土地覆盖分类研究[J].资源科学, 32(11):2152-2159.
[19]樊威伟, 马伟强, 郑艳, 等, 2018.青藏高原地面加热场年际变化特征及其与西风急流关系研究[J].高原气象, 37(3):591-601.DOI:10.7522/j.issn.1000-0534.2017.00062.
[20]贾立, 王介民, 胡泽勇, 2000.干旱区热力学粗糙度特征及对感热通量估算的影响[J].高原气象, 19(4):495-503.DOI:10.3321/j.issn.1000-0534.2000.04.011.
[21]李凡, 李森, 陈同庆, 2004.西藏那曲藏北草地观光畜牧业发展的探讨——以才曲塘草地畜牧业科技示范区为例[J].四川草原, 109(12):38-42.DOI:10.3969/j.issn.1673-8403.2004.12.015.
[22]李家伦, 洪钟祥, 孙菽芬, 2000.青藏高原西部改则地区大气边界层特征[J].大气科学, 24(3):301-312.DOI:10.3878/j.issn.1006-9895.2000.03.02.
[23]李林, 陈晓光, 王振宇, 等, 2010.青藏高原区域气候变化及其差异性研究[J].气候变化研究进展, 6(3):181-186.DOI:10.3969/j.issn.1673-1719.2010.03.005.
[24]刘静, 卓慕宁, 胡耀国, 2007.初论地表粗糙度[J].生态环境, 16(6):1829-1836.DOI:10.3969/j.issn.1674-5906.2007.06.047.
[25]马耀明, 塚本修, 王介民, 等, 2001.青藏高原草甸下垫面上的动力学和热力学参数分析[J].自然科学进展, 11(8):42-46.DOI:10.3321/j.issn.1002-008X.2001.08.006.
[26]马耀明, 姚檀栋, 王介民, 等, 2006.青藏高原复杂地表能量通量研究[J].地球科学进展, 21(12):1215-1223.DOI:10.3321/j.issn.1001-8166.2006.12.002.
[27]苏炳凯, 赵鸣, 任军芳, 1999.标量粗糙度对地气交换的影响[J].大气科学, 23(3):349-358.DOI:10.3878/j.issn.1006-9895.1999.03.11.
[28]孙根厚, 2016.藏北地区高寒草地地表通量的尺度扩展分析[D].兰州: 中国科学院寒区旱区环境与工程研究所, 1-134.
[29]王介民, 1999.陆面过程实验和地气相互作用研究——从HEIFE到IMGRASS和GAME-Tibet/TIPEX[J].高原气象, 18(3):280-294.
[30]吴国雄, 刘屹岷, 刘新, 等, 2005.青藏高原加热如何影响亚洲夏季的气候格局[J].大气科学, 29(1):47-56.
[31]吴国雄, 毛江玉, 段安民, 等, 2004.青藏高原影响亚洲夏季气候研究的最新进展[J].气象学报, 62(5):528-540.DOI:10.3321/j.issn.0577-6619.2004.05.002.
[32]吴国雄, 张永生, 1999.青藏高原的热力和机械强迫作用以及亚洲季风的爆发Ⅱ.爆发时间[J].大气科学, 23(1):52-62.DOI:10.3878/j.issn.1006-9895.1999.01.07.
[33]吴晓鸣, 马伟强, 马耀明, 2013.夏季藏北高原地表热通量特征观测与模拟[J].高原气象, 32(5):1246-1252.DOI:10.7522/j.issn.1000-0534.2013.00082.
[34]谢琰, 文军, 刘蓉, 等, 2018.太阳辐射和水汽压差对黄河源区高寒湿地潜热通量的影响研究[J].高原气象, 37(3):614-625.DOI:10.7522/j.issn.1000-0534.2017.00063.
[35]谢志鹏, 胡泽勇, 刘火霖, 等, 2017.陆面模式CLM4.5对青藏高原高寒草甸地表能量交换模拟性能的评估[J].高原气象, 36(1):1-12.DOI:10.7522/j.issn.1000-0534.2016.00012.
[36]严晓强, 胡泽勇, 孙根厚, 等, 2018.那曲高寒草地上四种地表通量计算方法的对比[J].高原气象, 37(2):358-370.DOI:10.7522/j.issn.1000-0534.2017.00067.
[37]杨丽薇, 高哓清, 惠小英, 等, 2017.青藏高原中部聂荣亚寒带半干旱草地近地层湍流特征研究[J].高原气象, 36(4):875-885.DOI:10.7522/j.issn.1000-0534.2016.00089.
[38]杨梅学, 姚檀栋, 1998.青藏高原雪盖对亚洲季风影响研究进展[J].冰川冻土, 20(2):90-95.DOI:10.1088/0256-307X/16/9/027.
[39]杨耀先, 李茂善, 胡泽勇, 等, 2014.藏北高原高寒草甸地表粗糙度对地气通量的影响[J].高原气象, 33(3):626-636.DOI:10.7522/j.issn.1000-0534.2013.00199.
[40]张强, 吕世华, 2003.城市表面粗糙度长度的确定[J].高原气象, 22(1):24-32.
[41]张永生, 吴国雄, 1998.关于亚洲夏季风爆发及北半球季节突变的物理机理的诊断分析:Ⅰ季风爆发的阶段性特征[J].气象学报, 56(5):2-17.DOI:10.11676/qxxb19980.47.
[42]周秀骥, 赵平, 陈军明, 等, 2009.青藏高原热力作用对北半球气候影响的研究[J].中国科学(D辑:地球科学), 39(11):1473-1486.
[43]周扬, 徐维新, 白爱娟, 等, 2017.青藏高原沱沱河地区动态融雪过程及其与气温关系分析[J].高原气象, 36(1):24-32.DOI:10.7522/j.issn.1000-0534.2016.00013.
Outlines

/