Based on the ERA-Interim reanalysis data from 1979 to 2016 provided by the European Center for Medium-range Weather Forecast (ECMWF), the cloud water content and its water vapor transport over the Qinghai-Tibetan Plateau (QTP) in summer is analyzed. The results show that the summer cloud water content over the QTP accounts for 48% of the total year, which decreases from southeast to northwest. There are four water vapor channels affecting the cloud water content, which are the Indian Ocean channel, the South China Sea channel, the northern Bay of Bengal and the western Iranian channel (briefly called channel 1, 2, 3, 4 in order), respectively. There are obvious interannual variations of cloud water content and water vapor channel intensities. The interannual variation of cloud water content is in consistent with that of channel 2 and 4. It is shown that both the cloud water content and four channel intensities have increased trends. When the intensity of channel 1 is strong, abnormal water vapor from the northern part of the Indian Ocean and the South China Sea will convergent over the Bay of Bengal and be transported to the QTP, which mainly increases the cloud water content in the northwestern part of the QTP. When the intensity of channel 2 is strong, the anomalous southward flux over the South China Sea and the Indo-China Peninsula and the anomalous southwest flux over the northern Bay of Bengal support more water vapor to the southeastern QTP. The stronger channel 3 intensity indicates more water vapor from westerly and Indian Ocean are transported to the QTP, resulting more cloud water content in the northeastern QTP. When the intensity of channel 4 is strong, the water vapor from the South China Sea to the southern part of the Bay of Bengal is abnormally transported to the QTP, resulting more cloud water content in the central and southeastern TP. In addition, the stronger and southwestward of northwest Pacific subtropical high is consistent with stronger identities of channel 2 and 4, which is conducive to the transportation of water vapor to the QTP.
LIU Juju
,
YOU Qinglong
,
WANG Nan
. Interannual Anomaly of Cloud Water Content and Its Connection with Water Vapor Transport over the Qinghai-Tibetan Plateau in Summer[J]. Plateau Meteorology, 2019
, 38(3)
: 449
-459
.
DOI: 10.7522/j.issn.1000-0534.2018.00138
[1]Dee D P, Uppala S M, Simmons A J, et al, 2011.The ERA-Interim reanalysis:Configuration and performance of the data assimilation system[J].Quarterly Journal of the royal meteorological society, 137 (656):553-597.DOI:10.1002/qj.828.
[2]Feng L, Zhou T J, 2012.Water vapor transport for summer precipitation over the Tibetan Plateau:Multidata set analysis[J].Journal of Geophysical Research Atmospheres, 117:D20114.DOI:10.1029/2011JD017012.
[3]Li J L F, Waliser D E, Chen W T, et al, 2012.An observationally based evaluation of cloud ice water in CMIP3 and CMIP5 GCMs and contemporary reanalyses using contemporary satellite data[J].Journal of Geophysical Research Atmosphere, 117:D16105.DOI:10.1029/2012JD017640.
[4]Wu G, Zhang Y, 1998.Tibetan Plateau forcing and the Asian Monsoon onset over south Asia and South China Sea[J], Monthly Weather Review, 126(4):913-927.DOI:10.1175/1520-0493(1998)126<0913:tpfatt>2.0.co;2.
[5]白磊, 王维霞, 姚亚楠, 等, 2013.ERA-Interim和NCEP/NCAR再分析数据气温和气压值在天山山区适用性分析[J].沙漠与绿洲气象, 7(3):51-56.
[6]保云涛, 游庆龙, 谢欣汝, 2018.青藏高原积雪时空变化特征及异常成因[J].高原气象, 37(4):899-910.DOI:10.7522/j.issn.1000-0534.2017.00099.
[7]陈德亮, 徐柏青, 姚檀栋, 等, 2015.青藏高原环境变化科学评估:过去、现在与未来[J].科学通报, 60(32):3025-3035.DOI:10.1360/N972014-01370.
[8]樊威伟, 马伟强, 郑艳, 等, 2018.青藏高原地面加热场年际变化特征及其与西风急流关系研究[J].高原气象, 37(3):591-601.DOI:10.7522/j.Issn.1000-0534.2017.00062.
[9]高荣, 韦志刚, 钟海玲, 2017.青藏高原陆表特征与中国夏季降水的关系研究[J].冰川冻土, 39(4):741-747.DOI:10.7522/j.issn.1000-0240.2017.0084.
[10]耿蓉, 2017.基于卫星和再分析数据的大气水循环变量比较和分析[D].合肥: 中国科学技术大学.
[11]过霁冰, 徐祥德, 施晓晖, 等, 2012.青藏高原冬季积雪关键区视热源特征与中国西南春旱的联系[J].高原气象, 31(4):900-909.
[12]韩熠哲, 马伟强, 王炳赟, 等, 2017.青藏高原近30年降水变化特征分析[J].高原气象, 36(6):1477-1486.DOI:10.7522/j.issn.1000-0534.2016.00125.
[13]衡志炜, 2013.基于卫星及数值模式资料的云水凝物的气候特征分析和检验[D].合肥: 中国科学技术大学.
[14]李永华, 徐海明, 高阳华, 等, 2010.西南地区东部夏季旱涝的水汽输送特征[J].气象学报, 68(6):932-943.
[15]林厚博, 游庆龙, 焦阳, 等, 2016.青藏高原及附近水汽输送对其夏季降水影响的分析[J].高原气象, 35(2):309-317.DOI:10.7522/j.issn.1000-0534.2014.00146.
[16]鲁春霞, 谢高地, 成升魁, 等, 2004.青藏高原的水塔功能[J].山地学报, 22(4):428-432.DOI:10.16089/j.cnki.1008-2786.2004.04.008.
[17]潘留杰, 张宏芳, 周毓荃, 等, 2015.1979-2012年夏季黄土高原空中云水资源时空分布[J].中国沙漠, 35(2):456-463.DOI:10.7522/j.issn.1000-694X.2014.0034.
[18]潘留杰, 张宏芳, 朱伟军, 等, 2013.ECMWF模式对东北半球气象要素场预报能力的检验[J].气候与环境研究, 18(1):111-123.DOI:10.3878/j.issn.1006-9585.2012.11097.
[19]石晓兰, 杨青, 姚俊强, 等, 2016.基于ERA-Interim资料的中国天山山区云水含量空间分布特征[J].沙漠与绿洲气象, 10(2):50-56.DOI:10.3969/j.issn.1002-0799.2016.02.008.
[20]王青霞, 吕世华, 鲍艳, 等, 2014.青藏高原不同时间尺度植被变化特征及其与气候因子的关系分析[J].高原气象, 33(2):301-312.DOI:10.7522/j.issn.1000-0534.2014.00002.
[21]王顺久, 2017.青藏高原积雪变化及其对中国水资源系统影响研究进展[J].高原气象, 36(5):1153-1164.DOI:10.7522/j.issn.1000-0534.2016.00117.
[22]王霄, 巩远发, 岑思弦, 2009.夏半年青藏高原"湿池"的水汽分布及水汽输送特征[J].地理学报, 64(5):601-608.
[23]吴国雄, 毛江玉, 段安民, 等, 2004.青藏高原影响亚洲夏季气候研究的最新进展[J].气象学报, 62:528-540.
[24]姚檀栋, 朱立平, 2006.青藏高原环境变化对全球变化的响应及其适应对策[J].地球科学进展, 21(5):459-464.
[25]张人禾, 苏凤阁, 江志红, 等, 2015.青藏高原21世纪气候和环境变化预估研究进展[J].科学通报, 60(32):3036-3047.DOI:10.1360/N972014-01296.
[26]周晓霞, 丁一汇, 王盘兴, 2008.影响华北汛期降水的水汽输送过程[J].大气科学, 32(2):92-97.