Study on Temporal Spatial Distribution Characteristics of Latent Heat over the Qinghai-Tibetan Plateau

  • CHEN Yue ,
  • LI Yueqing ,
  • FAN Guangzhou ,
  • CHEN Yuhang
Expand
  • Chengdu University of Information Technology, Chengdu 610025, Sichuan, China;Institute of Plateau Meteorology, China Meteorological Administration, Chengdu 610072, Sichuan, China;Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China

Received date: 2018-09-01

  Online published: 2019-06-28

Abstract

Using monthly mean specific humidity reanalysis data provided by ECMWF (European Centre for Medium-Range Weather Forecasts). We study the spatio-temporal distribution, interannual and interdecadal variation of latent heat from 1979-2015 over Qinghai-Tibetan Plateau (QTP) by using the methods such as annual average analysis of q, climate tendency rate analysis of q at each layer, EOF analysis and so on. The results show that latent heat over QTP decreases from lower layer to upper layer, the amount of latent heat is the most in summer, the second is autumn, distribution characteristics of spring and autumn are similar, and the amount of latent heat is the least in winter. The max values are all located in the southeast and the south side of QTP; Specific humidity increases sharply in summer and the region where specific humidity grow fastest is located in the northeast of QTP. Specific humidity grows slowest in winter and the fastest growing area is also located in the northeast. Generally speaking, there is a positive growth rate of specific humidity over QTP, but the growth rate of specific humidity is negative in the west of QTP and the Yunnan-Guizhou Plateau at lower layers, and that decreases fastest in summer; As for the EOF analysis, the first EOF mode of the four integral layers[from the surface to 500 hPa (the first integral layer), from 500 hPa to 400 hPa (the second integral layer), from 400 hPa to 300 hPa (the third integral layer), from the surface to 300 hPa (the whole integral layer)] generally shows a positive distribution. And the second EOF mode shows a "positive negative" dipole distribution. The third EOF mode of the four integral layers is a "positive-negative-positive" distribution, and the inter-annual variation of all EOF modes are not obvious except the second EOF mode.

Cite this article

CHEN Yue , LI Yueqing , FAN Guangzhou , CHEN Yuhang . Study on Temporal Spatial Distribution Characteristics of Latent Heat over the Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2019 , 38(3) : 460 -473 . DOI: 10.7522/j.issn.1000-0534.2018.00130

References

[1]Yang K, Wu H, Qin J, et al, 2014.Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle:A review[J].Global and Planetary Change, 112(1):79-91.DOI:10.1016/j.gloplacha.2013.12.001.
[2]Zhao P, Chen L X, 2001.Interannual variability of atmospheric heat source/sink over the Qinghai-Xizang (Tibetan) Plateau and its Relation to Circulation[J].Advances in Atmospheric Sciences, 18(1):106-116.DOI:10.1007/s00376-001-0007-3.
[3]Duan A M, Wu G X, 2003.The main spatialheating patterns over the Tibetan Plateau in July andthe corresponding distributions of circulation andprecipitation over Eastern Asia[J].Acta Meteorologica Sinica, 61(4):447-456.
[4]Ji L R, Si T B D, 1984.Numerical experiments on the seasonal transition of the general circulation over Asia-PartⅠ[J].Advances in Atmospheric Sciences, 1(1):128-139.DOI:10.1007/BF03187624.
[5]Cornelius C J H S, Loren C C, 2018.EOF analysis of COSMIC observations on the global zonal mean temperature structure of the Upper Troposphere and Lower Stratosphere from 2007 to 2013[J].Journal of Atmospheric and Solar-Terrestrial Physics, 171(1):12-20.DOI:10.1016/j.jastp.2017.08.021.
[6]吴凌云, 余志豪, 2001.青藏高原潜热感热、地形高度与我国冬、夏季温度的可能影响[J].气象科学, 21(3):291-298.
[7]解晋, 余晔, 刘川, 等, 2018.青藏高原地表感热通量变化特征及其对气候变化的响应[J].高原气象, 37(1):28-42.DOI:10.7522/j.issn.1000-0534.2017.00019.
[8]曾钰婵, 范广洲, 赖欣, 等, 2016.青藏高原季风活动与大气热源/汇的关系[J].高原气象, 35(5):1148-1156.DOI:10.7522/j.issn.1000-0534.2015.00093.
[9]黄荣辉, 1985.夏季青藏高原上空热源异常对北半球大气环流异常的作用[J].气象学报, 43(2):208-220.DOI:10.11676/qxxb1985.026.
[10]徐祥德, 赵天良, 施晓晖, 等, 2015.青藏高原热力强迫对中国东部降水和水汽输送的调制作用[J].气象学报, 73(1):20-35.DOI:10.11676/qxxb2014.051.
[11]陈忠明, 闵文彬, 刘富明, 2003.青藏高原地表热源异常与四川盆地夏季降水的关联[J].气象, 29(5):9-12.DOI:10.7519/j.issn.1000-0526.2003.5002.
[12]岑思弦, 巩远发, 赖欣, 2014.青藏高原及其周围地区大气热源对川渝盆地夏季降水的影响[J].高原气象, 33(5):1182-1189.DOI:10.7522/j.issn.1000-0534.2013.00122.
[13]李永华, 卢楚翰, 徐海明, 等, 2011.夏季青藏高原大气热源与西南地区东部旱涝的关系[J].大气科学, 35(3):422-434.DOI:10.3878/j.issn.1006-9895.2011.03.04.
[14]黄晓清, 唐叔乙, 次旺顿珠, 2018.气候变暖背景下西藏高原雪灾变化及其与大气环流的关系[J].高原气象, 37(2):325-332.DOI:10.7522/j.issn.1000-0534.2017.00038.
[15]张长灿, 李栋梁, 王慧, 等, 2017.青藏高原春季地表感热特征及其对中国东部夏季雨型的影响[J].高原气象, 36(1):13-23.DOI:10.7522/j.issn.1000-0534.2016.00028.
[16]钟珊珊, 何金海, 管兆勇, 等, 2009.1961-2001年青藏高原大气热源的气候特征[J].气象学报, 67(3):407-416.DOI:10.11676/qxxb2009.040.
[17]简茂球, 罗会邦, 2002.青藏高原地面加热场日变化对亚洲季风区大气环流的影响[J].热带气象学报, 18(3):269-275.DOI:10.16032/j.issn.1004-4965.2002.03.010.
[18]赵勇, 钱永甫, 2007.青藏高原地表热力异常与我国江淮地区夏季降水的关系[J].大气科学, 31(1):145-154.DOI:10.3878/j.issn.1006-9895.2007.01.15.
[19]罗会邦, 陈蓉, 1995.夏半年青藏高原东部大气热源异常对环流和降水的影响[J].气象科学, 15(4):94-102.
[20]傅云飞, 刘奇, 自勇, 等, 2008.基于TRMM卫星探测的夏季青藏高原降水和潜热分析[J].高原山地气象研究, 28(1):8-18.
[21]刘奇, 傅云飞, 2007.夏季青藏高原潜热分布及其廓线特征[J].中国科学技术大学学报, 37(3):303-309.
[22]杨莲梅, 张庆云, 2007.南疆夏季降水异常的环流和青藏高原地表潜热通量特征分析[J].高原气象, 26(3):438-440.
[23]徐国昌, 李栋梁, 蒋尚城, 1990.卫星观测的OLR对夏季青藏高原月雨量及凝结潜热的估算[J].高原气象, 9(3):256-264.
[24]李栋梁, 柳苗, 王慧, 2008.青藏高原雨季降水凝结潜热的估算研究[J].高原气象, 27(1):10-16.
[25]陆渝蓉, 高国栋, 翟盘茂, 1996.江淮地区旱涝时期大气潜热能和大气感热能的计算与比较[J].地球物理学报, 39(5):608-614.
[26]张铭, 安洁, 朱敏, 2007.一次暴雨过程的EOF分析[J].大气科学, 31(2):321-328.
[27]曾广恩, 练树民, 程旭华, 等, 2006.东、黄海海表面温度季节内变化特征的EOF分析[J].海洋科学进展, 24(2):146-155.
[28]王彬宇, 范广洲, 周定文, 2014.青藏高原夏季水汽输送特征分析[J].长江流域资源与环境, 23(增刊):21-29.DOI:10.11870/cjlyzyyhj2014Z1004.
[29]谢欣汝, 游庆龙, 林厚博, 2018.近10年青藏高原中东部地表相对湿度减少成因分析[J].高原气象, 37(3):642-650.DOI:10.7522/j.issn.1000-0534.2017.00091.
[30]敖婷, 李跃清, 2015.夏季青藏高原及周边热力特征与东亚降水的区域关系[J].高原气象, 34(5):1204-1216.DOI:10.7522/j.issn.1000-0534.2014.00100.
Outlines

/