The Bulk Transfer Coefficient and Characteristics of Surface Heat Source on Alpine Grassland at Naqu

  • ZHENG Huixuan ,
  • HU Zeyong ,
  • SUN Genhou ,
  • XIE Zhipeng ,
  • YAN Xiaoqiang ,
  • WANG Yidan ,
  • FU Chunwei
Expand
  • Key Laboratory for land process and climate change in cold and Arid Regions, Northwest Institute of Ecological and Environmental Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;Center for Excellence in Tibetan Plateau Earth Science, Chinese Academy of Science, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100049, China;School of Atmospheric Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China;Institute of Tibetan Plateau, Chinese Academy of Sciences, Beijing 100101, China;Chengdu Meteorological Administration, Chengdu 610071, Sichuan, China

Received date: 2018-11-23

  Online published: 2019-06-28

Abstract

Based on the data from the Naqu Station of Plateau Climate and Environment in the Northern Qinghai-Tibetan Plateau, this paper investigates the relative humidity close to the underlying surface and the bulk transfer coefficient over the underlying surface of typical alpine grassland in the Naqu area of the Qinghai-Tibetan Plateau. On this basis, using the conventional observation data from the Naqu Weather Station of the China Meteorological Administration from 1980 to 2016 to calculate and analyze the characteristics of surface fluxes over alpine grassland in Qinghai-Tibetan Plateau. The results suggest that:(1) The monthly average of the relative humidity close to the underlying surface at Naqu Station is between 33% and 62%, the highest is in September, and the lowest is in February, the monthly mean bulk transfer coefficient for heat CH at Naqu Station vary from 1.6×10-3 to 2.7×10-3, and the monthly mean bulk transfer coefficient for vapor Cλ at Naqu Station vary from 1.0×10-3 to 2.0×10-3. (2) The surface fluxes at Naqu area from 1980 to 2016 are calculated, the annually averaged sensible heat fluxes H showed a weakening trend, while the latent heat fluxes showed an increasing trend, which led to the inconspicuous trend of surface heat source. In stages, the mutation of sensible heat fluxes occurred in 2004, the trend before and after the turning point was firstly weakened and then increased, the latent heat fluxes decreased significantly from 1994 to 2005, which led to a significant reduction in surface heat source from 1995 to 2005. (3) The seasonal variation of latent heat fluxes at Naqu Station is more obvious than the change in sensible heat fluxes, the seasonal variation of the surface heat source is more dependent on the seasonal variation of latent heat fluxes.

Cite this article

ZHENG Huixuan , HU Zeyong , SUN Genhou , XIE Zhipeng , YAN Xiaoqiang , WANG Yidan , FU Chunwei . The Bulk Transfer Coefficient and Characteristics of Surface Heat Source on Alpine Grassland at Naqu[J]. Plateau Meteorology, 2019 , 38(3) : 497 -506 . DOI: 10.7522/j.issn.1000-0534.2019.00024

References

[1]Chen L, Reiter E R, Feng Z, 1985.The atmospheric heat source over the Tibetan Plateau:May-August 1979[J].Monthly Weather Review, 113:1771-1790.
[2]Cressman G P, 1960.Improved terrain effects in barotropic forecasts[J].Monthly Weather Review, 88:327-342.
[3]Duan A, Wu G, 2008.Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades.Part Ⅰ:Observations[J].Journal of Climate, 21(13):3149-3164.
[4]Dyer A J, 1974.A review of flux-profile relationships[J].Boundary-Layer Meteorology, 7(3):363-372.
[5]Kaimal J C, Finnigan J J, 1994.Atmospheric boundary layer flows:their structure and measurement[M].Oxford:Oxford university press.
[6]Li G, Duan T, Gong Y, et al, 2001.Estimates of the bulk transfer coefficients and surface fluxes over the Tibetan Plateau using AWS data[J].Journal of the Meteorological Society of Japan, 79(2):625-635.
[7]Moore C J, 1986.Frequency response corrections for eddy correlation system[J].Boundary-Layer Meteorology, 37:17-35.
[8]Schotanus P, Nieuwstadt F T M, Debruin H A R, 1983.Temperature measurement with a sonic anemometer and its application to heat and moisture fluctuations[J].Boundary-Layer Meteorology, 26:81-93.
[9]Stull R B, 1988.An introduction to boundary layer meteorology[M].Springer Science & Business Media.
[10]Webb E K, Pearman G I, Leuning R, 1980.Correction of the flux measurements for density effects due to heat and water vapour transfer[J].Quarterly Journal of Royal Meteorological Society, 106:85-100.
[11]Yaglom A M, 1977.Comments on wind and temperature flux-profile relationships[J].Boundary-Layer Meteorology, 11(1):89-102.
[12]Yanai M, 1992.Seasonal Heating of the Tibetan Plateau and Its Effects on the Evolution of the Asian Summer Monsoon[J].Journal of the Meteorological Society of Japan, 79(1):419-434.
[13]Yang K, Guo X F, Wu B Y, 2011.Recent trends in surface sensible heat flux on the Tibetan Plateau[J].Science in China Series (Earth Sciences), 54(1):19-28.
[14]陈家宜, 范邵华, 赵传峰, 等, 2006.涡旋相关法测定湍流通量偏低的研究[J].大气科学, 30(3):423-432.
[15]陈万隆, 翁笃鸣, 1984.关于青藏高原感热和潜热旬总量计算方法的初步研究[C]//青藏高原气象科学实验论文集(二).北京: 科学出版社: 35-45.
[16]陈忠明, 闵文彬, 刘富明, 2003.青藏高原地表热源异常与四川盆地夏季降水的关联[J].气象, 29(5):9-12.
[17]李栋梁, 陈丽萍, 1990.青藏高原地面加热场强度与东亚环流及西北初夏旱的关系[J].应用气象学报, 1(4):383-391.
[18]李国平, 段廷扬, 巩远发, 2000.青藏高原西部地区的总体输送系数和地面通量[J].科学通报, 45(8):865-869.
[19]李国平, 段廷扬, 吴贵芬, 2003.青藏高原西部的地面热源强度及地面热量平衡[J].地理科学, 23(1):13-18.
[20]刘树华, 黄子琛, 刘立超, 等, 1995.空气动力学方法在湍流通量计算中的误差分析[J].气象, 21(3):3-6.
[21]梁玲, 李跃清, 胡豪然, 等, 2013.青藏高原夏季感热异常与川渝地区降水关系的数值模拟[J].高原气象, 32(6):1538-1545.DOI:10.7522/j.issn.1000-0534.2013.00028.
[22]孙根厚, 2016.藏北地区高寒草地地表通量的尺度扩展分析[D].兰州: 中国科学院寒区旱区环境与工程研究所, 46-48.
[23]盛裴轩, 2003.大气物理学[M].北京:北京大学出版社, 102-112.
[24]王超, 韦志刚, 李振朝, 2010.敦煌戈壁气象塔站资料的质量控制[J].干旱气象, 28(2):121-127.
[25]解晋, 余晔, 刘川, 等, 2018.青藏高原地表感热通量变化特征及其对气候变化的响应[J].高原气象, 37(1):28-42.DOI:10.7522/j.issn.1000-0534.2017.00019.
[26]叶笃正, 高由禧, 1979.青藏高原气象学[M].北京:科学出版社, 89-101.
[27]杨娟, 周广胜, 王云龙, 等, 2006.基于变分方法的内蒙古典型草原水热通量估算[J].应用生态学报, 17(11):2046-2051.
[28]于威, 刘屹岷, 杨修群, 等, 2018.青藏高原不同海拔地表感热的年际和年代际变化特征及其成因分析[J].高原气象, 37(5):1161-1176.DOI:10.7522/j.issn.1000-0534.2018.00027.
[29]严晓强, 胡泽勇, 孙根厚, 等, 2018.那曲高寒草地上四种地表通量计算方法的对比[J].高原气象, 37(2):358-370.DOI:10.7522/j.issn.1000-0534.2017.00067.
[30]严晓强, 2018.藏北高寒草地下垫面地-气能量交换特征及气候因子分析[D].兰州: 中国科学院西北生态环境资源研究院, 15-17.
[31]周俊前, 刘新, 李伟平, 等, 2016.青藏高原春季地表感热异常对西北地区东部降水变化的影响[J].高原气象, 35(4):845-853.DOI:10.7522/j.issn.1000-0534.2015.00053.
[32]周秀骥, 赵平, 陈军明, 等, 2009.青藏高原热力作用对北半球气候影响的研究[J].中国科学(地球科学), 39(11):1473-1486.
[33]竺夏英, 刘屹岷, 吴国雄, 2012.夏季青藏高原多种地表感热通量资料的评估[J].中国科学(地球科学), 42(7):1104-1112.
[34]张艳, 钱永甫, 2002.青藏高原地面热源对亚洲季风爆发的热力影响[J].南京气象学院学报, 25(3):298-306.
Outlines

/