Precipitation Characteristics of Southwest Vortex in Sichuan Basin from May to October in 2004—2017

  • HAN Linjun ,
  • BAI Aijuan
Expand
  • School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China

Received date: 2018-09-06

  Online published: 2019-06-28

Abstract

Based on the CFS reanalysis data with spatial resolution of 0.5×0.5 degrees, we conduct a census of the Southwest Vortex from May to October in 2004—2017 after making a quality test to CFS and TMPA V7 data. According to the precipitation distribution shown by TMPA V7 data, we classified Southwest Vortex. The frequency of the precipitation in different directions is counted, and the precipitation characteristics of the four most types are analyzed, including the range of rainstorm and the intensity of precipitation. The circulation differences as well as precipitation formation mechanism of the four representative cases are analyzed. The results show that, there is a consistently growth in the amount of Southwest Vortex through these summer half years. Moreover, the southwest vortex precipitation frequently occurred in the northeast, east, southeast and central parts of the southwest vortex successively in the summer half year. Analysis of four kinds of frequent frequency southwest vortex precipitation characteristics. It is found that precipitation in central section has the largest average range of rainstorm and the strongest precipitation intensity, followed by precipitation in southeast part of southwest vortex, east part and northeast part successively. Through the analysis of circulation situation on representative case, we found that, both in the type of central part and northeast part precipitation, cold and warm currents meet in the northern part of the basin. The difference is that central part precipitation occurs when there is a wider range of cold air intrusion at the low level and the southwest airflow is stronger compared with the type of northeast part precipitation. These two branches form a circular flow field in the basin which is different from confrontation state happened in the type of northeast part precipitation. The type of east and southeast part precipitation happens when there is no cold air invasion. The last one happens when the southwest current turn westward in front of Daba Mountains. However, the former one happens when the current flows eastward compared with type of southeast part precipitation and finally flows across Daba Mountains. The formation mechanism of four kinds of Southwest Vortex is analyzed. It is found that there is a significant vertical circulation in Southwest Vortex. The circulation circle is usually composed of an ascending airflow near the southwest vortex and a downdraft of the north side. The precipitation area is usually corresponding to the position of the circulation circle.

Cite this article

HAN Linjun , BAI Aijuan . Precipitation Characteristics of Southwest Vortex in Sichuan Basin from May to October in 2004—2017[J]. Plateau Meteorology, 2019 , 38(3) : 552 -562 . DOI: 10.7522/j.issn.1000-0534.2018.00100

References

[1]Feng X Y, Liu C H, Fan G Z, et al, 2016.Climatology and structures of Southwest Vortices in the NCEP Climate Forecast System Reanalysis[J].Journal of Climate, 29:7675-7701.DOI:10.1175/JCLI-D-15-0813.1.
[2]Chen M, Zheng Y G, 2004.Vorticity budget investigation of a simulated long-lived mesoscale vortex in South China[J].Advances in Atmospheric Sciences, 21(6):928-940.DOI:10.1007/bf02915595.
[3]陈忠明, 闵文彬, 2000.西南低涡活动的统计研究[C]//李跃清编.青藏高原气象学研究文集.北京: 气象出版社, 162-170.
[4]陈忠明, 闵文彬, 崔春光, 2004.西南低涡研究的一些新进展[J].高原气象, 23(增刊):1-5.
[5]陈贵川, 谌芸, 张勇, 等, 2013."12·7·21"西南涡极端强降雨的成因分析[J].气象, 39(12):1529-1541.DOI:10.7519/j.issn.1000-0526.2013.12.001.
[6]陈鹏, 刘德, 庞玥, 等, 2015.一次西南低涡发生发展的涡度收支及潜热释放诊断[J].干旱气象, 33(6):934-940.
[7]段海霞, 陆维松, 毕宝贵, 2008.凝结潜热与地表热通量对一次西南低涡暴雨影响分析[J].高原气象, 27(6):1315-1323.
[8]高正旭, 王晓玲, 李维京, 2009.西南低涡的统计特征及其对湖北降水的影响[J].暴雨灾害, 28(4):302-305+312.
[9]顾清源, 周春花, 青泉, 等, 2008.一次西南低涡特大暴雨过程的中尺度特征分析[J].气象, 34(4):39-47.
[10]李国平, 2013.高原涡、西南涡研究的新进展及有关科学问题[J].沙漠与绿洲气象, 7(3):1-6.
[11]卢敬华, 1986.西南低涡概论[M].北京:气象出版社, 63-64.
[12]李跃清, 郁淑华, 彭俊, 等, 2013.2012西南低涡年鉴[M].北京:科学出版社.
[13]刘晓冉, 李国平, 2014.一次东移型西南低涡的数值模拟及位涡诊断[J].高原气象, 33(5):1204-1216.DOI:10.7522/j.issn.1000-0534.2013.00151.
[14]马振峰, 汪之义, 1993.西南低涡活动的若干统计分析[J].四川气象, 3(2):11-15.
[15]慕丹, 李跃清, 2017.西南涡统计特征研究综述[J].干旱气象, 35(2):175-181.DOI:10.11755/j.issn.1006-7639(2017)-02-0175.
[16]钱正安, 顾弘道, 颜宏, 等, 1990.四川"81·7"特大暴雨和西南涡的数值模拟[J].气象学报, 48(4):415-423.
[17]屠妮妮, 何光碧, 陈静, 2012.冷暖空气入侵对西南低涡发生发展影响研究[J].高原山地气象研究, 32(2):10-19.
[18]王作述, 汪迎辉, 梁益国, 1996.一次西南低涡暴雨的数值试验研究[C]//丁一汇编.暴雨科学、业务试验和天气动力学理论的研究.北京: 气象出版社, 235-267.
[19]王中, 白莹莹, 杜钦, 等, 2008.一次无地面冷空气触发的西南涡特大暴雨分析[J].气象, 34(12):63-71.
[20]王革丽, 陈万隆, 周锁铨, 1997.植被和土壤湿度对西南低涡降水影响的敏感性试验[J].高原气象, 16(3):20-26.
[21]王春学, 马振峰, 王佳津, 等, 2017.四川盆地区域性暴雨时空变化特征及其前兆信号研究[J].气象, 43(12):1517-1526.DOI:10.7519/j.issn.1000-0526.2017.12.007.
[22]姚秀萍, 吴国雄, 赵兵科, 等, 2007.与梅雨锋上低涡降水相伴的干侵入研究[J].中国科学(地球科学), 37(3):417-428.DOI:10.3969/j.issn.1674-7240.2007.03.016.
[23]杨帅, 丁治英, 徐海明, 2006.梅雨暴雨中高低空急流与西南涡的活动[J].南京气象学院学报, 29(1):122-128.
[24]叶瑶, 李国平, 2016.近61年夏半年西南低涡的统计特征与异常发生的流型分析[J].高原气象, 35(4):946-954.DOI:10.7522/j.issn.1000-0534.2015.00073.
[25]赵平, 孙淑清, 1991.一次西南低涡形成过程的数值试验和诊断(一)——地形动力作用和潜热作用对西南低涡影响的数值试验对比分析[J].大气科学, 15(6):46-52.DOI:10.3878/j.issn.1006-9895.1991.06.05.
Outlines

/