Application of Assimilation of Doppler Radar Data on Heavy Rain Simulating Test in Fujian

  • JIANG Zongxiao ,
  • SHEN Yongsheng ,
  • JIANG Yongcheng ,
  • ZENG Xiaomei ,
  • LIAO Yanzhen ,
  • WANG Tie
Expand
  • Meteorological Bureau of Zhangzhou, Zhangzhou 363000, Fujian, China;Meteorological Bureau of Sanming, Sanming 365000, Fujian, China;Laboratory of Strait Meteorology, Xiamen Meteorological Bureau, Xiamen 361012, Fujian, China;Institute of Nanjing China-Spacenet Satellite Telecom, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China

Received date: 2018-09-12

  Online published: 2019-06-28

Abstract

The mesoscale model WRFV3.5 was used to compare the result of different cumulus convectional and microphysical parameterization schemes on rainstorm simulating over Fujian area, and do simulated test on heavy rain by assimilating Doppler radar data in Fujian. The result indicated that the microphysical parameterization of WSM5 along with BMJ cumulus convectional parameterization had relatively well matched with observed strong precipitation, the TS score of this group were 0.29 both in downfall and rainstorm simulating. The Doppler radar data directly assimilated into the mesoscale model, which focused on the rainstorm period of typhoon, applied by the Three Dimensional Variation Assimilation System (3DVAR). The simulated effect was better with Doppler than assimilation of surface observed data. Furthermore, the radar reflectively data assimilation, which made the rainstorm area adjust to the south, was favored to precipitation area simulations (the TS score increased by 0.12), while only assimilated radial velocity of Doppler data could be advantaged to rainfall strength simulations (the TS score increased by 0.13). The result of assimilation with both reflectively and radial velocity data showed minimum deviation compared to observation (the TS score increased by 0.16). In addition, the result also showed interval time of assimilation had obvious influenced on simulated effects, and three or six hour of assimilated interval time was the best experiment in case simulations.

Cite this article

JIANG Zongxiao , SHEN Yongsheng , JIANG Yongcheng , ZENG Xiaomei , LIAO Yanzhen , WANG Tie . Application of Assimilation of Doppler Radar Data on Heavy Rain Simulating Test in Fujian[J]. Plateau Meteorology, 2019 , 38(3) : 563 -572 . DOI: 10.7522/j.issn.1000-0534.2018.00155

References

[1]Gasperoni N A, Xue M, Palmer R D, et al, 2013.Sensitivity of convective initiation prediction to near-surface moisture when assimilating radar refractivity:Impact tests using OSSEs[J].Journal of Atmospheric and Oceanic Technology, 30 (10):2281-2302.
[2]Lin Y, Ray P S, Johnson K W, 1993.Initialization of a modeled convective storm using Doppler radar-derived fields[J].Monthly Weather Review, 121:2757-2775.
[3]Lorenz E N, 1982.Atmospheric predictability experiment with a large numerical model[J].Tellus, 34:505-513.
[4]Yue J, Meng Z Y, Yu C K, et al, 2017.Impact of coastal radar observability on the forecast of the track and rainfall of Typhoon Morakot (2009) using WRF-based ensemble Kalman filter data assimilation[J].Advances in Atmospheric Sciences, 34(1), 66-78.
[5]Zhang F M, Yang Y, Wang C H, 2015.The effects of assimilating conventional and ATOVS data on forecasted near-surface wind with WRF-3DVAR[J].Monthly Weather Review, 143 (1):153-164.
[6]Zhang F M, Pu Z X, Wang C H, 2017a.Effects of boundary layer vertical mixing on the evolution of hurricanes over land[J].Monthly Weather Review, 145 (6):2343-2361.
[7]Zhang F M, Pu Z X, 2017b.Effects of vertical eddy diffusivity parameterization on the evolution of landfalling hurricanes[J].Journal of the Atmospheric Sciences, 74 (6), 1879-1905.
[8]Zhao K, Xue M, 2009.Assimilation of coastal Doppler radar data with the ARPS 3DVAR and cloud analysis for the prediction of Hurricane[J].Geophysical Research Letters, 36(12):L12803.
[9]Zhu L, Wan Q, Shen X, et al, 2016.Prediction and predictability of high-impact Western Pacific landfalling Tropical Cyclone Vicente (2012) through convection-permitting ensemble assimilation of doppler radar velocity[J].Monthly Weather Review, 144(1):21-43.
[10]陈锋, 董美莹, 冀春晓, 等, 2012.WRF模式对浙江2011年夏季降水和温度预报评估及其湿过程敏感性分析[J].浙江气象, 33(3):3-12.
[11]董海萍, 袁炳, 罗雨, 2017.多源资料循环同化在台风"潭美"预报中的应用[J].热带气象学报, 33(4):433-441.
[12]兰伟仁, 朱江, 薛明, 等, 2010.风暴尺度天气下利用集合卡尔曼滤波模拟多普勒雷达资料同化试验Ⅰ:不考虑模式误差的情形[J].大气科学, 34(3):640-652.
[13]廖镜彪, 王雪梅, 夏北成, 等, 2012.WRF模式中微物理和积云参数化方案的对比试验[J].热带气象学报.28(4):461-469.
[14]闵锦忠, 刘悦, 高士博, 等, 2016.微物理方案及其参数对EnSRF资料同化的影响研究[J].大气科学学报, 39(4):510-524.
[15]沈菲菲, 闵锦忠, 陈鹏, 等, 2015.多普勒雷达资料同化在台风"桑美"预报中的应用研究[J].海洋学报, 37(3):25-35.
[16]施丽娟, 许小峰, 李柏, 等, 2009.雷达资料在登陆台风"桑美"数值模拟中的应用[J].应用气象学报, 20(3):257-266.
[17]王洪, 尹金方, 王东海, 2014.单双参云微物理方案对华南暴雨的模拟对比分析[J].高原气象, 33(5):1341-1351.DOI:10.7522/j.issn.1000-0534.2013.00119.
[18]王坤, 张飞民, 孙超, 等, 2014.WRF-WSM3微物理方案在青藏高原地区暴雪模拟中的改进及试验[J].大气科学, 38 (1), 101-109.
[19]王越亚, 邵爱梅, 2016.SVD-En3Dvar同化方法在一次飑线过程中的应用[J].高原气象, 35(3):755-766.DOI:10.7522/j.issn.1000-0534.2015.00109.
[20]徐慧燕, 朱业, 刘瑞, 等, 2013.长江下游地区不同边界层参数化方案的试验研究[J].大气科学, 37(1):149-158.
[21]杨艳蓉, 李柏, 张沛源, 等, 2004.多普勒雷达资料四维变分同化[J].应用气象学报, 15(1):95-110.
[22]杨毅, 邱崇践, 2006.利用多普勒雷达资料分析一次强降水过程的中尺度流场[J].高原气象, 25(5):925-931.
[23]杨银, 朱克云, 张杰, 等, 2015.复杂地形下多普勒雷达资料同化的研究[J].高原气象, 34(5):1495-1501.DOI:10.7522/j.issn.1000-0534.2014.00059.
[24]尹金方, 王东海, 翟国庆, 2014.区域中尺度模式云微物理参数化方案特征及其在中国的适用性[J].地球科学进展, 29(2):238-249.
[25]张飞民, 王澄海, 2014.利用WRF-3DVAR同化常规观测资料对近地层风速预报改进的试验[J].高原气象, 33(3):675-685.DOI:10.7522/j.issn.1000-0534.2012.00198.
[26]张林, 倪允琪, 2006.雷达径向风资料的四维变分同化试验[J].大气科学, 30(3):433-440.
[27]周振波, 闵锦忠, 彭霞云, 等, 2006.单多普勒雷达风场反演的扩展VAP方法(Ⅰ):方法与对比试验[J].高原气象, 25(3):516-524.
Outlines

/