[1]Barahona D, Nenes A, 2009.Parameterizing the competition between homogeneous and heterogeneous freezing in ice cloud formation-polydisperse ice nuclei[J].Atmospheric Chemistry and Physics, 9(16):5933-5948.
[2]Bowen E G, 1956.January freezing nucleus measurement[J].Australian Journal of Physics, 9:552-555.
[3]Cooper W A, 1980.A method of detecting contact ice nuclei using filter samples[C]//Preprints Cloud Phys.Conf., Clermont-Ferrand, France.605-669.
[4]Deierling W, Petersen W A, Latham J, et al, 2008.The relationship between lightning activity and ice fluxes in thunderstorms[J].Journal of Geophysical Research, 113:D15210.
[5]Ekman A, Engstr?m A, Wang C, 2007.The effect of aerosol composition and concentration on the development and anvil properties of a continental deep convective cloud[J].Quarterly Journal of the Royal Meteorological Society, 133B(627):143-1452.
[6]Fan J, Zhang R, Li G, et al, 2007.Effects of aerosols and relative humidity on cumulus clouds[J].Journal of Geophysical Research, 112:D14204.
[7]Fletcher N H, 1962.Physics of rain clouds[M].Cambridge:Cambridge University Press, 386.
[8]Gardiner B, Lamb D, Pitter R L, et al, 1985.Measurements of initial potential gradient and particle charges in a montana summer thunderstorm[J].Journal of Geophysical Research, 90:6079-6086.
[9]Gong W, Min Q, Li R, et al, 2010.Detailed cloud resolving model simulations of the impacts of Saharan air layerdust on tropical deep convection-Part 1:Dust acts as ice nuclei[J].Atmospheric Chemistry and Physics Discuss, 10(5):12907-12952.
[10]Harrington J Y, Olsson P Q, 2001.On the potential influence of ice nuclei on surface-forced marine stratocumulus cloud dynamics[J].Journal of Geophysical Research:Atmospheres, 106(D21):27473-27484.
[11]Hundson J G, 1993.Cloud condensation nuclei[J].Journal of Applied Meteorology, 32(3):596-607.
[12]Isono K, Komabayasi M, Ono A, 1959.The nature and the origin of ice nuclei in the atmosphere[J].Journal of the Meteorological Society of Japan, 37:211-233.
[13]Isono K, Tanaka T, 1966.Sudden increase of ice nucleus concentration associated with thunderstorm[J].Journal of the Meteorological Society of Japan, 44(5):255-259.
[14]Jayaratne E R, Saunders C P R, Hallett J, 1983.Laboratory studies of the charging of soft-hail during ice crystal interactions[J].Quarterly Journal of the Royal Meteorological Society, 109:609-630.
[15]Jin Y, Doyle J D, Zhao Q, et al, 2010.The impact of ice nuclei concentration on hurricane modeling[Z].NRL Review:Featured Research, 2010:123-129.
[16]Kar S K, Liou Y A, Ha K J, 2009.Aerosol effects on the enhancement of cloud-to-ground lightning over major urban areas of South Korea[J].Atmospheric Research, 92(1):80-87.
[17]Khain A P, BenMoshe N, Pokrovsky A, 2008.Factors determining the impact of aerosols on surface precipitation from clouds:An attempt at classification[J].Journal of the Atmospheric Sciences, 65(6):1721-1748.
[18]Latham J, Petersen W A, Deierling W, et al, 2007.Field identification of a unique globally dominant mechanism of thunderstorm electrification[J].Quarterly Journal of the Royal Meteorological Society, 133(627):1453-1457.
[19]Liu X H, Penner J E, 2002.Effect of Mount Pinatubo H<sub>2</sub>SO<sub>4</sub>/H<sub>2</sub>O aerosol on ice nucleation in the upper troposphere using a global chemistry and transport model[J].Journal of Geophysica Research, 107(D12):AAC 2-1-AAC 2-18.
[20]Mansell E R, Macgorman D R, Ziegler C L, et al, 2005.Charge structure and lightning sensitivity in a simulated multicell thunderstorm[J].Journal of Geophysical Research, 110:D12101.
[21]Mansell E R, Ziegler C L, 2013.Aerosol effects on simulated storm electrification and precipitation in a two-moment bulk microphysics model[J].Journal of the Atmospheric Sciences, 70:2032-2050.
[22]Mitzeva R, Latham J, Petrova S, 2006.A comparative modeling study of the early electrical development of maritime and continental thunderstorms[J].Atmospheric Research, 82(1/2):26-36.
[23]Murray N D, Orville R E, Huffines G R, 2000.Effect of pollution from Central American fires on cloud-to-ground lightning in May 1998[J].Geophysical research letters, 27:2249-2252.
[24]Orville R E, Huffines G, Nielsen-Gammon J, et al, 2001.Enhancement of cloud-to-ground lightning over Houston[J].Geophysical Research Letters, 28(13):2597-2600.
[25]Pereyra R G, Avila E E, Castellano N E, et al, 2000.A laboratory study of graupel charging[J].Journal of Geophysical Research, 105:20803-20812.
[26]Saunders C P R, Keith W D, Mitzeva R P, 1991.The effect of liquid water on thunderstorm charging[J].Journal of Geophysical Research, 96:11007-11017.
[27]SaundersC P R, Brooks I M, 1992.The effects of high liquid water content on thunderstorm charging[J].Journal of Geophysical Research, 97(D13):14671-14676.
[28]Shi Z, Tang H Q, Tan Y B, 2016.Effects of the inductive charging on the electrification and lightning discharges in thunderstorms[J], Terrestrial, Atmospheric and Oceanic Sciences, 27(2):241-251
[29]Shi Z, Tan Y B, Tang H Q, et al, 2015.Aerosol effect on the land-ocean contrast in thunderstorm electrification and lightning frequency[J].Atmospheric Research, 164:131-141.
[30]Sun A P, Chun H Y, Baik J J, et al, 2002.Influence of electrification on microphysical and dynamical processes in a numerically simulated thunderstorm[J].Journal of Applied Meteorology, 41:1112-1127.
[31]Steiger S M, Orville R E, 2003.Cloud-to-ground lightning enhancement over Southern Louisiana[J].Geophysical Research Letters, 30(19):379-394.
[32]Takahashi T, 1978.Riming electrification as a charge generation mechanism in thunderstorms[J].Journal of the Atmospheric Sciences, 35:1536-1548.
[33]Tan YB, Tao S C, 2006.Numerical simulations of the bi-level and branched structure of intracloud lightning flashes[J].Science in China, 49(6):661-672.
[34]Tan Y B, Tao S, Liang Z, et al, 2014.Numerical Study on Relationship between Lightning Types and Distribution of Space Charge and Electric Potential[J].Journal of Geophysica Research, 119(2):1003-1014.
[35]Teller A, Levin Z, 2006.The effects of aerosols on precipitation and dimensions of subtropical clouds:asensitivity study using a numerical cloud model[J].Atmospheric Chemistry and Physics, 6:67-80.
[36]Thompson G P, Field R, Rasmussen R M, et al, 2008.Explicit forecasts of winter precipitation using an improved bulk microphysics scheme.Part Ⅱ:Implementation of a new snow parameterization[J].Monthly Weather Review, 136(12):5095-5115.
[37]Wang Y, Wan Q, Meng W, et al, 2011.Long-term impacts of aerosols on precipitation and lightning over the Pearl River Delta megacity area in China[J].Atmospheric Chemistry and Physics, 11(23):12421-12436.
[38]Westcott N E, 1995.Summertime cloud-to-ground lightning activity around major mid-western urban areas[J].Journal ofApplied Meteorology, 34:1633-1642.
[39]Williams E, Zhang R, Rydock J, 1991.Mixed phase microphysics and cloud electrification[J].Journal of the Atmospheric Sciences, 48:2195-2203.
[40]Williams E, Stanfill S, 2002.The physical origin of the land-ocean contrast in lightning activity[J].Comptes Rendus Physique, 3(10):1277-1292.
[41]Zhao P G, Yin Y, Xiao H, 2015.The effects of aerosol on development of thunderstorm electrification:A numerical study[J].Atmospheric Research, 153:376-391.
[42]Ziegler C L, Macgorman D R, Dye J E, et al, 1991.A model evaluation of non-inductive graupel-ice charging in the early electrification of a mountain thunderstorm[J].Journal of Geophysical Research, 96(961):12833-12855.
[43]陈丽, 银燕, 2009.沙尘气溶胶对大气冰相过程发展的敏感性试验[J].气象科学, 29(02):2208-2213.
[44]葛正谟, 周春科, 1986.兰州市大气冰核的观测[J].高原气象, 5(2):167-171.
[45]洪延超, 1998.三维冰雹云催化数值模式[J].气象学报, 56(6):641-653.
[46]胡志晋, 何观芳, 1987.积雨云微物理过程的数值模拟(一)微物理模式[J].气象学报, 45(4):467-484.
[47]孔凡铀, 黄美元, 徐华英, 1991.冰相过程在积云发展中的作用的三维数值模拟研究[J].中国科学(B辑), 35(7):1000-1008.
[48]李丽光, 周德平, 2011.大气冰核研究进展[J].高原气象, 30(6):1716-1721.
[49]马明, 2004.雷电与气候变化相互关系的一些研究[D].合肥: 中国科学技术大学.
[50]牛生杰, 安夏兰, 陈跃, 等, 2000.贺兰山地区大气冰核浓度的测量及初步分析[J].南京气象学院学报, 23(2):294-298.
[51]彭艳, 王钊, 董妍, 等, 2016.1960-2012年陕西降水变化特征及可能成因分析[J].高原气象, 35(4):1050-1059.DOI:10.7522/j.issn.1000-0534.2015.00023.
[52]石爱丽, 郑国光, 游来光, 等, 2006.2003年秋季青海省河南县地面大气冰核观测分析[J].应用气象学报, 17(2):245-249.
[53]宿兴涛, 许丽人, 魏强, 等, 2016.东亚地区沙尘气溶胶对降水的影响研究[J].高原气象, 35(1):211-219.DOI:10.7522/j.issn.1000-0534.2014.00091.
[54]谭涌波, 陶善昌, 祝宝友, 等, 2006a.雷暴云内闪电双层、分支结构的数值模拟[J].中国科学(D辑), 36(5):486-496.
[55]谭涌波, 2006a.闪电放电与雷暴云电荷、电位分布相互关系的数值模拟[D].合肥: 中国科技大学.
[56]谭涌波, 陶善昌, 祝宝友, 等, 2006b.雷暴云内闪电双层、分支结构的数值模拟[J].中国科学(地球科学), 36(5):486-496.
[57]谭涌波, 陶善昌, 祝宝友, 2007.云闪放电对云内电荷和电位分布影响的数值模拟[J].地球物理学报, 50(4):1053-1065.
[58]谭涌波, 师正, 王宁宁, 等, 2012.随机性与电环境特征对地闪击地点影响的数值模拟[J].地球物理学报, 55(11):3534-3541.
[59]谭涌波, 杨忆, 师正, 等, 2015.冰晶核化对雷暴云微物理过程和起电影响的数值模拟研究[J].大气科学, 39(2):289-302.
[60]王谦, 胡志晋, 1990.三维弹性大气模式和实测强风暴的模拟[J].气象学报, 48(1):91-101.
[61]肖辉, 杨慧玲, 洪延超, 等, 2012.大气冰核谱分布对对流风暴云人工催化影响的数值模拟研究[J].气候与环境研究, 17(6):833-847.
[62]杨磊, 银燕, 杨绍忠, 等, 2013.南京地区大气冰核浓度的测量及分析[J].大气科学, 37(3):579-594.
[63]杨玉华, 陈葆德, 王斌, 等, 2015.背景场云凝结核浓度对理想热带气旋强度的影响[J].高原气象, 34(5):1379-1390.DOI:10.7522/j.issn.1000-0534.2014.00095.
[64]游来光, 石安英, 1964.北京地1963年春季冰核浓度变化特点的观测分析[J].气象学报, 53(1):548-554.
[65]游来光, 杨绍忠, 王祥国, 等, 2002.1995和1996年春季北京地区大气冰核浓度的观测与研究[J].气象学报, 60(1):101-109.
[66]于达维, 何观芳, 周勇, 等, 2001.三维对流云催化模式及其外场试用[J].应用气象学报, 12(增刊):122-132.