[1]Abhilash S, Sahai A K, Mohankumar K, et al, 2012.Assimilation of Doppler Weather Radar Radial Velocity and reflectivity observations in WRF-3DVAR system for short-range forecasting of convective storms[J].Pure and Applied Geophysics, 169(11):2047-2070.
[2]Brewster K, Hu M, Xue M, et al, 2005.Efficient assimilation of radar data at high resolution for short-range numerical weather prediction[C]//World Weather Research Program Symposium on Nowcasting and Very Short-Range Forecasting, WSN05, Tolouse, France, WMO, Symposium CD, Paper.2005, 3.
[3]Crook N A, Sun J, 2002.Assimilating radar, surface, and profiler data for the Sydney 2000 forecast demonstration project[J].Journal of Atmospheric and Oceanic Technology, 19(6):888-898.
[4]Dong J, Xue M, 2013.Assimilation of radial velocity and reflectivity data from coastal WSR-88D radars using ensemble Kalman filter for the analysis and forecast of landfalling hurricane Ike (2008)[J].Quarterly Journal of Royal Meteorological Society, 139(671):467-487.
[5]Doviak R J, Zrni? D S, 1993.Doppler Radar andweather observations[M].2nd ed.Academic Press, 87-105
[6]Ellis M D, Smith S D, 1990.Efficientdealiasing of Doppler velocities using local environment constraints[J].Journal of Atmospheric and Oceanic Technology, 7(1):118-128.
[7]Gao J, Smith T M, Stensrud D J, et al, 2013.Areal-time weather-adaptive 3DVAR analysis system for severe weather detections and warnings[J].Weather and Forecasting, 28(3):727-745.
[8]Gao J, Xue M, Brewster K, et al, 2004.Athree-dimensional variational data analysis method with recursive filter for Doppler Radars[J].Journal of Atmospheric and Oceanic Technology, 21(3):457-469.
[9]Ge G, Gao J, Xue M, 2013.Impacts of assimilating measurements of different state variables with a simulated supercell storm and three-dimensional variational method[J].Monthly Weather Review, 141(8):2759-2777.
[10]Hu M, Xue M, Brewster K, 2006a.3DVAR and cloud analysis with WSR-88D level-Ⅱ data for the prediction of the Fort Worth tornadic thunderstorms.Part Ⅰ:Cloud analysis and its impact[J].Monthly Weather Review, 134(2), 675-698.
[11]Hu M, Xue M, Gao J, et al, 2006b.3DVAR and cloud analysis with WSR-88D level-Ⅱ data for the prediction of the Fort Worth, Texas, tornadic thunderstorms.Part Ⅱ:Impact of radial velocity analysis via 3DVAR[J].Monthly Weather Review, 134(2):699-721.
[12]Lakshmanan V, Smith T, Stumpf G, et al, 2007.The warning decision support system-integrated information[J].Weather and Forecasting, 22(3):596-612.
[13]Lemon L R, Doswell C A, 1979.Severethunderstorm evolution and mesocyclone structure as related to Tornado genesis[J].Monthly Weather Review, 107(9):1184-1197.
[14]Lhermitt R M, Miller L J, 1970.Doppler Radar methodology for observation of convective storms[C]//Bulletin of the American Meteorological Society.45 Beacon S T, Boston, MA 02108-3693: Amer Meteorological SOC.
[15]Li W, Xie Y, Deng S M, et al, 2008.Application of the multi-Grid method to the two-dimensional Doppler Radar radial velocity data assimilation[J].Journal of Atmospheric and Oceanic Technology, 27(27):319-332.
[16]Li Y Z, Wang X G, Xue M, 2012.Assimilation of radar radial velocity data with the WRF hybrid ensemble-3DVAR system for the prediction of hurricane Ike (2008)[J].Monthly Weather Review, 140 (11):3507-3524
[17]Miller L J, Strauch R G, 1974.A dual Doppler radar method for the determination of wind velocities within precipitating weather systems[J].Remote Sensing of Environment.3(4):219-235.
[18]Miller L J, Sun J, 2003.Initialization and forecasting of thunderstorms:Specification of radar measurement errors[J].Clinical Chemistry, 21(4):588-590.
[19]Schenkman A, Xue M, Shapiro A, et al, 2011.The analysis and prediction of the 8-9 May 2007 Oklahoma tornadic mesoscale convective system by assimilating WSR-88D and CASA radar data using 3DVAR[J].Monthly Weather Review, 139(1):224-246.
[20]Sun J, Crook N A, 2001.Real-time low-level wind and temperature analysis using single WSR-88D data[J].Weather and Forecasting, 16(1):117-132.
[21]Sun J, Crook N A, 1997.Dynamical and microphysical retrieval from Doppler Radar observations using a cloud model and its adjoint.Part Ⅰ:Model development and simulated data experiments[J].Journal of Atmospheric Science, 54:1642-1661.
[22]Tong M, Xue M, 2008.Simultaneous estimation of microphysical parameters and atmospheric state with radar data and ensemble Kalman filter.Part Ⅰ:Sensitivity analysis and parameter identifiability[J].Monthly Weather Review, 136(5):1630-1648.
[23]Xue M, Wang D, Gao J, et al, 2003.The Advanced Regional Prediction System (ARPS), storm scale numerical weather prediction and data assimilation[J].Meteorology and Atmospheric Physics, 82(1):139-170.
[24]Xue M, Droegemeier K K, Wong V, 2000.The Advanced Regional Prediction System (ARPS)-A multi-scale non-hydrostatic atmospheric simulation and prediction model.Part Ⅰ:Model dynamics and verification[J].Meteorology and Atmospheric Physics, 75(3/4):161-193.
[25]Xue M, Droegemeier K K, Wong V, et al, 2001.The Advanced Regional Prediction System (ARPS)-A multi-scale nonhydrostatic atmospheric simulation and prediction tool.Part Ⅱ:Model physics and applications[J].Meteorology and atmospheric physics, 76(3/4):143-165.
[26]Ziegler C L, 1978.A dual Doppler variational objective analysis as applied to studies of convective storms[M].Norman:University of Oklahoma, 52-67.
[27]陈力强, 杨森, 肖庆农, 2009.多普勒雷达资料在冷涡强对流天气中的同化应用试验[J].气象, 35(12):12-20.
[28]陈明轩, 王迎春, 高峰, 等, 2011.基于雷达资料4DVar的低层热动力反演系统及其在北京奥运期间的初步应用分析[J].气象学报, 69(1):64-78.
[29]罗义, 梁旭东, 陈明轩, 2014.单多普勒雷达径向风同化的改进[J].气象科学, 34(6):620-628.
[30]马昊, 梁旭东, 罗义, 等, 2016.GRAPES 3Dvar中雷达径向风同化改进观测算子的应用[J].气象(1):34-43.
[31]盛春岩, 浦一芬, 高守亭, 2006.多普勒天气雷达资料对中尺度模式短时预报的影响[J].大气科学, 30(1):93-107.
[32]孙娟珍, 陈明轩, 范水勇, 2016.雷达资料同化方法:回顾与前瞻[J].气象科技进展, 6(3):17-27.
[33]覃月凤, 顾建峰, 吴钲, 等, 2015.雷达资料同化频次对一次西南涡暴雨的影响试验[J].高原气象, 34(4):963-972.DOI:10.7522/j.issn.1000-0534.2014.00050.
[34]王晓峰, 王平, 张蕾, 等, 2017.多源观测在快速更新同化系统中的敏感性试验[J].高原气象, 36(1):148-161.DOI:10.7522/j.issn.1000-0534.2016.00018.
[35]王永明, 高山红, 2016.黄海海雾数值模拟中多普勒雷达径向风数据同化试验[J].中国海洋大学学报(自然科学版), 46(8):1-12.
[36]文秋实, 王东海, 2017.基于GSI的华南地区对流尺度快速循环同化预报试验[J].气象, 43(6):653-664.
[37]肖艳姣, 2018.基于多普勒天气雷达体扫资料的MARC特征自动识别算法[J].高原气象, 37(1):264-274.DOI:10.7522/j.issn.1000-0534.2016.00143.
[38]徐琪, 慕熙昱, 刘韻蕊, 等, 2015.南京空域一次高空致灾冰粒过程的可预报性分析[J].高原气象, 34(1):258-268.DOI:10.7522/j.issn.1000-0534.2013.00105.
[39]薛谌彬, 陈娴, 吴俞, 等, 2017.雷达资料同化在局地强对流预报中的应用[J].大气科学, 41(4):673-690.
[40]杨毅, 邱崇践, 龚建东, 等, 2007.同化多普勒雷达风资料的两种方法比较[J].高原气象, 26(3):547-555.
[41]杨银, 朱克云, 张杰, 等, 2015.复杂地形下多普勒雷达资料同化的研究[J].高原气象, 34(5):1495-1501.DOI:10.7522/j.issn.1000-0534.2014.00059.
[42]张桂莲, 常欣, 黄晓璐, 等, 2018.东北冷涡背景下超级单体风暴环境条件与雷达回波特征[J].高原气象, 37(5):1364-1374.DOI:10.7522/j.issn.1000-0534.2018.00068.
[43]张林, 倪允琪, 2006.雷达径向风资料的四维变分同化试验[J].大气科学, 30(3):433-440.
[44]张沛源, 周海光, 胡绍萍, 2002.双多普勒天气雷达风场探测的可靠性研究[J].应用气象学报, 13(4):485-496.
[45]张小玲, 杨波, 朱文剑, 等, 2016.2016年6月23日江苏阜宁EF4级龙卷天气分析[J].气象, 42(11):1304-1314.
[46]张新忠, 陈军明, 赵平, 2015.多普勒天气雷达资料同化对江淮暴雨模拟的影响[J].应用气象学报26(5):555-566.
[47]郑永光, 朱文剑, 姚聃, 等, 2016.风速等级标准与2016年6月23日阜宁龙卷强度估计[J].气象, 42(11):1289-1303.
[48]周海光, 王玉彬, 2002.多部多普勒雷达同步探测三维风场反演系统[J].气象, 28(9):7-11.
[49]周荣卫, 何晓凤, 2018.新疆哈密复杂地形风场的数值模拟及特征分析[J].高原气象, 37(5):1413-1427.DOI:10.7522/j.issn.1000-0534.2018.00021.