Characteristics of Carbon Flux in Sandy Grassland Ecosystem under Natural Restoration in Horqin Sandy Land

  • CHEN Yinping ,
  • NIU Yayi ,
  • LI Wei ,
  • LI Yuqiang ,
  • GONG Xiangwen ,
  • WANG Xuyang
Expand
  • School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, Gansu, China;Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;University of Chinese Academy of Science, Beijing 100049, China;Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China

Received date: 2018-09-14

  Online published: 2019-06-28

Abstract

The characteristics of net ecosystem CO2 exchange (NEE) at different time scales were investigated in sandy grassland ecosystem under natural restoration in Horqin Sandy Land, based on the year-round (1 January 2017~31 December 2017) eddy covariance system. The results showed that:1) The monthly mean diurnal variation of NEE changed apparently with a single peak curve; there were obvious absorption peaks during the growing season (from May to September) while obvious release peaks during the non-growing season (from October to April). At the seasonal scale, the absorption peak and the release peak appeared alternately; the growing season was a carbon sink (with a net CO2 absorption of 202.11 g·m-2), whereas a carbon source for non-growing season (with a net CO2 release of 298.13 g·m-2). The annual carbon budget of the sandy grassland ecosystem showed a carbon source, with a net CO2 release of 96.02 g·m-2·a-1. 2) The NEE was significantly (P < 0.01) negatively linearly related to the temperature (both air and soil temperatures) during the growing season, but on the contrary during the non-growing season. However, the NEE was significantly (P < 0.01) positively linearly related to the soil water content during both the growing and non-growing seasons. The temperature and soil water content had significant synergistic effect on NEE.

Cite this article

CHEN Yinping , NIU Yayi , LI Wei , LI Yuqiang , GONG Xiangwen , WANG Xuyang . Characteristics of Carbon Flux in Sandy Grassland Ecosystem under Natural Restoration in Horqin Sandy Land[J]. Plateau Meteorology, 2019 , 38(3) : 650 -659 . DOI: 10.7522/j.issn.1000-0534.2018.00133

References

[1]Akiyama T, Kawamura K, 2010.Grassland degradation in China:Methods of monitoring, management and restoration[J].Grassland Science, 53(1):1-17.
[2]Dugas W A, Heuer M L, Mayeux H S, 1999.Carbon dioxide fluxes over bermudagrass, native prairie, and sorghum[J].Agricultural &amp; Forest Meteorology, 93(2):121-139.
[3]Falge E, Baldocchi D, Olson R, et al, 2001.Gap filling strategies for long term energy flux data sets[J].Agricultural and Forest Meteorology, 107(1):71-77.
[4]Fu Y, Yu G, Wang Y, et al, 2006.Effect of water stress on ecosystem photosynthesis and respiration of a Leymus chinensis steppe in Inner Mongolia[J].Science in China, 49(S2):196-206.
[5]Gao Y H, Li X R, Liu L C, et al, 2012.Seasonal variation of carbon exchange from a revegetation area in a Chinese desert[J].Agricultural and Forest Meteorology, 156:134-142.
[6]Hunt J E, Kelliher F M, Mcseveny T M, et al, 2002.Evaporation and carbon dioxide exchange between the atmosphere and a tussock grassland during a summer drought[J].Agricultural and Forest Meteorology, 111(1):65-82.
[7]Li Y Q, Chen Y P, Wang X Y, et al, 2017.Improvements in soil carbon and nitrogen capacities after shrub planting to stabilize sand dunes in China's Horqin Sandy Land[J].Sustainability, 9(4):662.
[8]Li Y Q, Brandle J, Awada T, et al, 2013.Accumulation of carbon and nitrogen in the plant-soil system after afforestation of active sand dunes in China's Horqin Sandy Land[J].Agriculture Ecosystems &amp; Environment, 177:75-84.
[9]Verma S B, Kim J, Clement R J, 1992.Momentum, water vapor, and carbon dioxide exchange at a centrally located prairie site during FIFE[J].Journal of Geophysical Research Atmospheres, 97(D17):18629-18639.
[10]Xu L K, Baldocchi D D, 2004.Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California[J].Agricultural &amp; Forest Meteorology, 123(1-2):79-96.
[11]Xu S X, Zhao X Q, Li Y N, et al, 2005.Diurnal and monthly variations of carbon dioxide flux in an alpine shrub on the Qinghai-Tibet Plateau[J].Chinese Science Bulletin, 50(6):539-543.
[12]Zhang G G, Kang Y M, Han G D, et al, 2011.Grassland degradation reduces the carbon sequestration capacity of the vegetation and enhances the soil carbon and nitrogen loss[J].Acta Agriculturae Scandinavica, 61(4):356-364.
[13]常小峰, 2012.三江源区高寒草地土壤有机碳空间分布及影响因素[D].北京: 中国科学院研究生院, 1-180.
[14]陈丽晶, 张镭, 梁捷宁, 等, 2017.半干旱区不同下垫面大气湍流通量比较分析[J].高原气象, 36(5):1325-1335.DOI:10.7522/j.jssn.1000-0534.2016.00101.
[15]陈新芳, 居为民, 陈镜明, 等, 2009.陆地生态系统碳水循环的相互作用及其模拟[J].生态学杂志, 28(8):1630-1639.
[16]董刚, 2011.中国东北松嫩草甸草原碳水通量及水分利用效率研究[D].长春: 东北师范大学, 1-95.
[17]董婷婷, 2013.库布齐沙地生态系统碳通量及控制机制研究[D].呼和浩特: 内蒙古大学, 1-50.
[18]杜群, 刘辉志, 冯健武, 等, 2012.半干旱区草原生态系统的碳交换特征[J].中国科学:地球科学, (5):711-722.
[19]杜睿, 吕达仁, 王庚辰, 2005.天然温带典型草原N<sub>2</sub>O和CH<sub>4</sub>通量的时间变化特征[J].自然科学进展, 15(3):313-320.
[20]龚婷婷, 雷慧闽, 杨大文, 等, 2018.荒漠灌丛碳通量对极端水分和温度的响应研究[J].水力发电学报, (2):32-46.
[21]郝彦宾, 2006.内蒙古羊草草原碳通量观测及其驱动机制分析[D].北京: 中国科学院植物研究所, 1-140.
[22]何学敏, 2012.艾比湖地区非生长季碳通量监测及响应机制初探[D].乌鲁木齐: 新疆大学, 1-100.
[23]李才才, 白梨花, 王一帆, 等, 2012.植被修复对退化草地固碳的影响及展望[J].内蒙古草业(2):6-12.
[24]李超, 胡海波, 2012.次生栎林生态系统碳通量与环境因子非对称响应机制[J].中南林业科技大学学报:32(9):94-101.
[25]李婧, 刘树华, 茅宇豪, 2006a.不同人为干扰地表条件下湍流通量特征的研究[J].自然科学进展, 16(6):59-66.
[26]李婧, 刘树华, 茅宇豪, 等, 2006b.不同生态系统CO<sub>2</sub>通量和浓度特征分析研究[J].地球物理学报, 49(5):1298-1307.
[27]刘新平, 何玉惠, 赵学勇, 等, 2011.科尔沁沙地奈曼地区降水变化特征分析[J].水土保持研究, 18(2):155-158.
[28]孟庆兰, 赵赫, 高军凯, 等, 2017.科尔沁地区年降水波动与空间分异特征[J].高原气象, 36(5):1234-1244.DOI:10.7522/j.issn.1000-0534.2016.00114.
[29]牛亚毅, 李玉强, 龚相文, 等, 2017.沙质草地生长季生态系统碳净交换量特征及土壤呼吸贡献率[J].生态学杂志, 36(9):2423-2430.
[30]牛亚毅, 李玉强, 王旭洋, 等, 2018.干旱年份沙质草地生态系统净CO<sub>2</sub>通量年变化特征[J].草业学报, 27(1):215-221.
[31]石培礼, 孙晓敏, 徐玲玲, 等, 2006.西藏高原草原化嵩草草甸生态系统CO<sub>2</sub>净交换及其影响因子[J].中国科学:地球科学, 36(s1):194-203.
[32]苏永中, 赵哈林, 2003.持续放牧和围封对科尔沁沙地退化草地碳截存的影响[J].环境科学, 24(4):23-28.
[33]王斌, 2014.三江源区退化和人工草地生态系统CO<sub>2</sub>通量及其影响机制的研究[D].天津: 南开大学, 1-132.
[34]王斌, 李洁, 姜微微, 等, 2012.草地退化对三江源区高寒草甸生态系统CO<sub>2</sub>通量的影响及其原因[J].中国环境科学, 32(10):1764-1771.
[35]王海波, 马明国, 王旭峰, 等, 2014.青藏高原东缘高寒草甸生态系统碳通量变化特征及其影响因素[J].干旱区资源与环境, 28(6):50-56.
[36]王娓, 汪涛, 彭书时, 等, 2007.冬季土壤呼吸:不可忽视的地气CO<sub>2</sub>交换过程[J].植物生态学报, 31(3):394-402.
[37]王雯, 2013.黄土高原旱作麦田生态系统CO<sub>2</sub>通量变化特征及环境响应机制[D].杨凌: 西北农林科技大学, 1-133.
[38]王新源, 李玉霖, 赵学勇, 等, 2012.干旱半干旱区不同环境因素对土壤呼吸影响研究进展[J].生态学报, 32(15):4890-4901.
[39]徐保梁, 2016.全球及区域陆地降水的多时间尺度变化特征及其与海温的联系[D].北京: 中国科学院大学, 1-40.
[40]徐世晓, 赵新全, 李英年, 等, 2004.青藏高原高寒灌丛生长季和非生长季CO<sub>2</sub>通量分析[J].中国科学, (A02):118-124.
[41]许大全, 1997.光合作用的"午睡"现象[J].植物生理学报, 33(6):466-467.
[42]严晓强, 胡泽勇, 孙根厚, 等, 2018.那曲高寒草地上四种地表通量计算方法的对比[J].高原气象, 37(2):358-370.DOI:10.7522/j.issn.1000-0534.2017.00067.
[43]于贵瑞, 孙晓敏, 2008.中国陆地生态系统碳通量观测技术及时空变化特征[M].北京:科学出版社.
[44]于贵瑞, 伏玉玲, 孙晓敏, 等, 2006.中国陆地生态系统通量观测研究网络(ChinaFLUX)的研究进展及其发展思路[J].中国科学, (A01):1-21.
[45]张金霞, 曹广民, 周党卫, 等, 2003.高寒矮嵩草草甸大气-土壤-植被-动物系统碳素储量及碳素循环[J].生态学报, 23(4):627-634.
[46]赵哈林, 2003.科尔沁沙地沙漠化过程及其恢复机理[M].北京:海洋出版社.
[47]赵同谦, 欧阳志云, 贾良清, 等, 2004.中国草地生态系统服务功能间接价值评价[J].生态学报, 1(6):1101-1110.
[48]周媛媛, 李新荣, 高艳红, 等, 2017.环境因子对沙坡头人工植被区碳通量的影响[J].兰州大学学报(自然科学版), 53(4):512-520.
[49]朱治林, 孙晓敏, 张仁华, 等, 2002.内蒙古半干旱草原能量物质交换的微气象方法估算[J].气候与环境研究, 7(3):351-358.
Outlines

/