The dominant interannual variations of Siberian high (SH) during Boreal Winter in north Asia region (40°N-60°N, 80°E-120°E) are analyzed using empirical orthogonal function (EOF) decomposition based on NCEP/NCAR monthly mean sea level pressure data from 1979 to 2017. The results show that the first EOF mode present a uniform variation over the whole region, the second mode exhibit a north-south seesaw relationship in seal level pressure change, and the third mode show a west-east seesaw relationship. In addition, the principal component time series of the three dominant modes all indicate significant interannual changes. Further analysis of the relevant atmospheric circulation pattern and East Asian temperature anomaly associated with the first mode show that the atmospheric circulation is characterized by changes in sea-land pressure gradient and related changes in East Asian trough strength and subtropical jet intensity. When SH is in negative phase, East Asia is warmer than usual, on the contrary East Asia is colder when SH is in positive phase. The second mode of SH is closely related to changes in Arctic Oscillation (AO) and North Atlantic Oscillation (NAO), where the height field shows a quasi-positive pressure north-south annular mode. When SH is strong in the north and weak in the south, the circulation pattern is similar to the AO positive phase, weakened temperate jet stream lead to warmer condition in the northeastern part of East Asia, but when SH is weak in the south, the northeastern part of East Asia is colder. The atmospheric circulation associated with the third mode mainly occurs in the local area of Eurasia, and also has a certain relationship with the North Atlantic Oscillation (NAO). When SH is strong in the east and weak in the west, the east part of East Asia is warmer and the southwest part is colder. When SH is weak in the east and strong in the west, the northeastern part of East Asia is colder and the southwest part is warmer.
ZHU Hongxia
,
CHEN Wen
,
FENG Tao
,
WANG Lin
. Interannual Variations of Siberian High during Boreal Winter and Its Influence on East Asian Temperature[J]. Plateau Meteorology, 2019
, 38(4)
: 685
-692
.
DOI: 10.7522/j.issn.1000-0534.2018.00116
[1]Chen W, Graf H F, Ronghui H, 2000. The interannual variability of East Asian winter monsoon and its relation to the summer monsoon[J]. Advances in Atmospheric Sciences, 17(1):48-60.
[2]Chen W, Yang S, Huang R H, 2005. Relationship between stationary planetary wave activity and the East Asian wintermonsoon[J]. Journal of Geophysical Research:Atmospheres, 110(D14):D14110. DOI:10.1029/2004JD005669.
[3]Cohen J, Saito K, Entekhabi D, 2001. The role of the Siberian high in Northern Hemisphere climate variability[J]. Geophysical Research Letters, 28(2):299-302.
[4]Hasanean H M, Almazroui M, Jones P D, et al, 2013. Siberian high variability and its teleconnections with tropical circulations and surface air temperature over Saudi Arabia[J]. Climate dynamics, 41(7/8):2003-2018.
[5]Wang L, Chen W, 2014. The East Asian winter monsoon:Re-amplification in the mid-2000s[J]. Chinese Science Bulletin, 59(4):430-436.
[6]Wang L, Huang R, Gu L, et al, 2009. Interdecadal variations of the East Asian winter monsoon and their association with quasi-stationary planetary wave activity[J]. Journal of Climate, 22(18):4860-4872.
[7]Wang L, Lu M M, 2016. The East Asian winter monsoon[M] in: World Scientific Series on Asia-Pacific Weather and Climate: Volume 9. The global monsoon system: Research and forecast (3rd Edition). Edited by Chang C P, Kuo H C, Lau N C, et al, 51-61, DOI: <a href="http://dx.doi.org/10.1142/9789813200913_0005" target="_blank">10.1142/9789813200913_0005</a>.
[8]Wu B, Wang J, 2002. Possible impacts of winter Arctic Oscillation on Siberian high, the East Asian winter monsoon and sea-ice extent[J/OL]. Advances in Atmospheric Sciences, 19: 297.[2018-10-08]. https: //doi.org/10.1007/s00376-002-0024-x.
[9]陈文, 康丽华, 2006.北极涛动与东亚冬季气候在年际尺度上的联系:准定常行星波的作用[J].大气科学, 30(5):863-870.
[10]陈文, 兰晓青, 王林, 等, 2013. ENSO和北极涛动对东亚冬季气候异常的综合影响[J].科学通报, 58(8):634-641.
[11]丁一汇, 温市耕, 李运锦, 1991.冬季西伯利亚高压动力结构的研究[J].气象学报, 49(4):430-439.
[12]龚道溢, 王绍武, 1999.西伯利亚高压的长期变化及全球变暖可能影响的研究[J].地理学报, (2):125-133.
[13]龚道溢, 朱锦红, 王绍武, 2002.西伯利亚高压对亚洲大陆的气候影响分析[J].高原气象, 21(1):8-14.
[14]贺圣平, 王会军, 2012.东亚冬季风综合指数及其表达的东亚冬季风年际变化特征[J].大气科学36(3):523-538. DOI:10.3878/j.issn.1006-9895.2011.11083.
[15]侯亚红, 杨修群, 李刚, 2007.冬季西伯利亚高压变化特征及其与中国气温的关系[J].气象科技, 35(5):646-650.
[16]侯亚红, 杨修群, 李刚, 等, 2008.西伯利亚高压特征指数及其变率分析[J].大气科学学报, 31(3):326-330.
[17]贾丹, 简茂球, 2015.中国冬季月地面气温的年际变化[J].气候与环境研究, 20(4):454-464. DOI:10.3878/j.issn.1006-9585.2015.14240.
[18]康丽华, 陈文, 王林, 等, 2009.我国冬季气温的年际变化及其与大气环流和海温异常的关系[J].气候与环境研究, 14(1):45-53.
[19]蓝柳茹, 李栋梁, 2016.西伯利亚高压的年际和年代际异常特征及其对中国冬季气温的影响[J].高原气象, 35(3):662-674. DOI:10.7522/j.issn.1000-0534.2016.00022.
[20]毛睿, 龚道溢, 房巧敏, 2007.冬季东亚中纬度西风急流对我国气候的影响[J].应用气象学报, 18(2):137-146.
[21]王绍武, 1962.东亚大气活动中心的多年变化与我国的气候振动[J].气象学报, 32(1):21-38.
[22]王遵娅, 丁一汇, 2006.近53年中国寒潮的变化特征及其可能原因[J].大气科学, 30(6):1068-1076.
[23]武炳义, 苏京志, 张人禾, 2011.秋-冬季节北极海冰对冬季西伯利亚高压的影响[J].科学通报, 56(27):2335-2343.
[24]张耀存, 王东阡, 任雪娟, 2008.东亚高空温带急流区经向风的季节变化及其与亚洲季风的关系[J].气象学报, 66(5):707-715.
[25]武炳义, 黄荣辉, 1999.冬季北大西洋涛动极端异常变化与东亚冬季风[J].大气科学, 23(6):641-651. DOI:10.3878/j.issn.1006-9895.1999.06.01.
[26]李栋梁, 蓝柳茹, 2017.西伯利亚高压强度与北大西洋海温异常的关系[J].大气科学学报, 40(1):13-24.