Observations of Soil Moisture Influence on Surface Energy Dynamics and Planetary Boundary Layer Characteristics over the Loess Plateau

  • MA Yingsai ,
  • MENG Xianhong ,
  • HAN Bo ,
  • YU Ye ,
  • Lü Shihua ,
  • LUAN Lan ,
  • LI Guangwei
Expand
  • Key Laboratory of Land Surface Process & Climate Change in Cold and AridRegions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;University of Chinese Academy of Sciences, Beijing 100049, China;Guangdong Province Key Laboratory for Climate Change and Natura Disaster Studies, School of Atmospheric Sciences, Zhongshan University, Zhuhai 519082, Guangdong, China;Pingliang Land Surface Process & Severe Weather Research Station, Chinese Academy of Sciences, Pingliang 744015, Gansu, China;College of Atmospheric Sciences, Chengdu University of Information Technology Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, Chengdu 610225, Sichuan, China;Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University ofInformation Science & Technology, Nanjing 210044, Jiangsu, China;Department of Earth and Atmospheric Sciences, Indiana University Bloomington, Indiana 47408, America

Received date: 2018-11-27

  Online published: 2019-08-28

Abstract

Based on the observational data of land surface processes and disastrous weather observation and research station in Pingliang area of Gansu Province during the summer (June, July and August) of 2016-2017, the effects of soil moisture on surface radiation, surface energy distribution and the development of atmospheric boundary layer in Pingliang area under dry, medium and wet conditions were quantitatively analyzed. And then, according to the general soil moisture change trend, the soil moisture was further divided into dry-medium sections(0.158~0.22 m3·m-3)and medium-wet (0.179~0.325 m3·m-3) sections and the correlation between soil moisture and Bowen's ratio, sensible heat flux and latent heat flux was analyzed to explore the possible physical mechanism of soil moisture affecting precipitation by affecting surface turbulent energy distribution and the development of atmospheric boundary layer. The results show that:(1)Soil moisture has a relatively small impact on albedo, and has a significant impact on Bowen's ratio, mainly affecting sensible and latent heat changes, that is, affecting the process of surface energy distribution. With the increase of soil moisture, latent heat increases, sensible heat decreases and Bowen ratio decreases significantly. The change of soil moisture has a significant impact on net radiation, mainly on net long-wave radiation. With the increase of soil moisture, net short-wave radiation increases slightly and net long-wave radiation increases significantly. (2)Inter-zonal analysis of soil moisture showed that the influence of soil moisture on latent heat flux and boundary layer height was greater in the dry and middle sections (0.158~0.220 m3·m-3) than in the middle and wet sections (0.179~0.325 m3·m-3). That is to say, the change of surface flux and the development of atmospheric boundary layer are more significant when the soil is dry. The results of quantitative analysis of the observations are consistent with the theoretical mechanism, which shows the reliability of the observed data and the data can provide an important data basis for the simulation of the numerical model in the Loess Plateau region.

Cite this article

MA Yingsai , MENG Xianhong , HAN Bo , YU Ye , Lü Shihua , LUAN Lan , LI Guangwei . Observations of Soil Moisture Influence on Surface Energy Dynamics and Planetary Boundary Layer Characteristics over the Loess Plateau[J]. Plateau Meteorology, 2019 , 38(4) : 705 -715 . DOI: 10.7522/j.issn.1000-0534.2019.00036

References

[1]Betts A K, 2000. Idealized model for equilibrium boundary layer over land[J]. Journal of Hydrometeorology, 1(6):507-523.
[2]Brubaker K L, Entekhabi D, 1996. Analysis of feedback mechanisms in land-atmosphere interaction[J]. Water Resources Research, 32(5):1343-1357.
[3]D'Odorico P, Bhattachan A, Davis K F, et al, 2013. Global desertification:Drivers and feedbacks[J]. Advances in Water Resources, 51:326-344.
[4]Eltahir E A B, 1989. A feedback mechanism in annual rainfall, Central Sudan[J]. Journal of Hydrology, 110(3), 323-334.
[5]Eltahir E A B, 1998. A soil moisture-rainfall feedback mechanism:Theory and observations[J]. Water Resources Research, 34(4):777-785.
[6]Findell K L, 1997. An analysis of the soil moisture-rainfall feedback, based on direct observations from Illinois[J]. Water Resources Research, 33(4):725-735.
[7]Georgakakos K P, Bae D H, Cayan D R, 1995. Hydroclimatology of continental watersheds:1. Temporal analyses[J]. Water Resources Research, 31(3):655-676.
[8]Giorgi F, Mearns L O, Shields C, et al, 1996. A regional model study of the importance of local versus remote controls of the 1988 drought and the 1993 flood over the central United States[J]. Journal of Climate, 9(5):1150-1168.
[9]Huang J, Vand D H M, Georgarakos K P, 1996. Analysis of model-calculated soil moisture over the United States (1931-1993) and applications to long-range temperature forecasts[J]. Journal of Climate, 9(6):1350-1362.
[10]Koster R D, Suarez M J, Higgins R W, et al, 2003. Observational evidence that soil moisture variations affect precipitation[J]. Geophysical Research Letters, 30(5):45-41.
[11]Koster R D, Sud Y C, Guo Z, et al, 2006. GLACE:The global land-atmosphere coupling experiment. Part Ⅰ:Overview[J]. Journal of Hydrometeorology, 7(4):590.
[12]Lettau H, Lettau K, Molion L C B, 1979. Amazonia's hydrologic cycle and the role of atmospheric recycling in assessing deforestation effects[J]. Monthly Weather Review, 107(3):227.
[13]Milly P C D, Dunne K A, 1994. Sensitivity of the global water cycle to the water-holding capacity of land[J]. Journal of Climate, 7(4):506-526.
[14]Namias J, 1958. Persistence of mid-tropospheric circulations between adjacent months and seasons[M]. Rossby Memorial Volume, Rockefeller Institute Press and Oxford University Press, 240-248.
[15]Namias J, 1963. Surface-atmosphere interactions as fundamental causes of droughts and other climatic fluctuations[M]. Arid Zone Resear-ch, Vol 20. Changes of Climate Proc Of Rome Symp, UNESCO. 75700 Paris, France, 345-359.
[16]Nicholson S, 2000. Land surface processes and Sahel climate[J]. Reviews Geophysics, 38(1):117-139.
[17]Oglesby R J, Erickson D J I, 1989. Soil moisture and the persistence of North American drought.[J]. Journal of Climate, 2(11):1362-1380.
[18]Okin G S, Parsons A J, Wainwright J, et al, 2009. Do Changes in Connectivity Explain Desertification?[J]. BioSci, 59(3):237-244.
[19]Pitman A J, 2003. The evolution of, and revolution in, land surface schemes designed for climate models[J]. International Journal of Climatologyl, 23(5):479-510.
[20]Reynolds J F, Smith D M, Lambin E F, et al, 2007. Global desertification:Building a science for dryland development[J]. Science, 316(5826):847-51.
[21]Rind D, 1982. The influence of ground moisture conditions in North America on summer climate as modeled in the GISS GCM[J]. Monthly Weather Reviews, 110(10):833-842.
[22]Rodriguez-Iturbe I, Entekhabi D, Bras R L, 1991. Nonlinear dynamics of soil moisture at climate scales:1. Stochastic analysis[J]. Water Resources Reserrch, 27(8):1899-1906.
[23]Sanchez-Mejia Z M, Papuga S A, 2014. Observations of a two-layer soil moisture influence on surface energy dynamics and planetary boundary layer characteristics in a semiarid shrubland[J]. Water Resources Research, 50(1):306-317.
[24]Savenije H H G, 1995. New definitions for moisture recycling and the relationship with land-use changes in the Sahel[J]. Journal of Hydrology, 167(1-4):57-78.
[25]Seneviratne S I, Corti T, Davin E L, et al, 2010. Investigating soil moisture-climate interactions in a changing climate:A review[J]. Earth Science Reviews, 99(3):125-161.
[26]Shukla J, Mintz Y, 1982. Influence of land-surface evapotranspiration on the earth's climate[J]. Science, 215(4539):1498-1501.
[27]Shuttleworth, James W, 1991. The modellion concept[J]. Reviews of Geophysics, 29(4):585-606.
[28]Small E E, Kurc S A, 2003. Tight coupling between soil moisture and the surface radiation budget in semiarid environments:Implications for land-atmosphere interactions[J]. Water Resources Research, 39(10):SWC 4-1.
[29]Taylor C M, Lambin E F, Stephenne N, et al, 2002. The influence of land use change on climate in the Sahel.[J]. Journal of Climate, 15(24):3615-3629.
[30]Vivoni E R, Moreno H A, Mascaro G, et al, 2008. Observed relation between evapotranspiration and soil moisture in the North American monsoon region[J]. Geophysical Research Letters, 35(22):659-662.
[31]Wen J, Wang L, Wei Z G, 2009. An overview of the Loess Plateau mesa region land surface process field experiment series(LOPEXs)[J]. Hydrology and Earth System Sciences, 13(6):945-951.
[32]Williams C A, Albertson J D, 2004. Soil moisture controls on canopy-scale water and carbon fluxes in an African savanna[J]. Water Resources Research, 40(9):333-341.
[33]Yeh T, Wetherald R T, Manabe S, 1984. The effect of soil moisture on the short-term climate and hydrology change-A numerical experiment[J]. Monthly Weather Reviews, 112(3):474.
[34]陈海山, 孙照渤, 2002.陆气相互作用及陆面模式的研究进展[J].南京气象学院学报, 25(2):277-288.
[35]陈星, 余晔, 陈晋北, 等, 2016.黄土高原半干旱区雨养农田地表辐射和能量通量的季节变化[J].高原气象, 35(2):351-362. DOI:10.7522/j.issn.1000-0534.2015.00004.
[36]戴永久, 曾庆存, 1996.陆面过程研究[J].水科学进展, 7(S1):40-53.
[37]丁旭, 赖欣, 范广洲, 等, 2018.再分析土壤温湿度资料在青藏高原地区适用性的分析[J].高原气象, 37(3):626-641. DOI:10.7522/j.issn.1000-0534.2017.00060.
[38]郭维栋, 马柱国, 王会军, 2007.土壤湿度-一个跨季度降水预测中的重要因子及其应用探讨[J].气候与环境研究, 12(1):20-28.
[39]栾澜, 孟宪红, 吕世华, 等, 2018.青藏高原土壤湿度触发午后对流降水模拟试验研究[J].高原气象, 37(4):873-885. DOI:10.7522/j.issn.1000-0534.2018.00008.
[40]马柱国, 魏和林, 符淙斌, 2000.中国东部区域土壤湿度的变化及其与气候变率的关系[J].气象学报, 58(3):278-287.
[41]马柱国, 符淙斌, 谢力, 等, 2001.土壤湿度和气候变化关系研究中的某些问题[J].地球科学进展, 20(4):563-568.
[42]王静, 祁莉, 吴志伟, 等, 2018.多套土壤湿度替代资料在青藏高原的适用性分析[J].高原气象, 37(2):371-381. DOI:10.7522/j.issn.1000-0534.2017.00074.
[43]章焕, 范广洲, 张永莉, 等, 2018.青藏高原土壤湿度对一例高原涡影响的数值模拟[J].高原气象, 37(4):886-898. DOI:10.7522/j.issn.1000-0534.2018.00004.
[44]朱智, 师春香, 张涛, 等, 2018.四套再分析土壤湿度资料在中国区域的适用性分析[J].高原气象, 37(1):240-252. DOI:10.7522/j.issn.1000-0534.2017.00033.
Outlines

/