Evapotranspiration is an important part of the hydrological process of wetland, which influences the hydrological ecosystem of wetland. Zoige Wetland is taken as the study area. Based on the daily meteorological observation data of 6 meteorological stations 1963-2013 which are within and outside the Zoige Wetland, the potential evapotranspiration (ET0) of each site and the wetland is estimated based on the Penman-Monteith formula recommended by FAO, respectively. The spatial and temporal evolution characteristics of ET0 are analyzed from the perspectives of tendency, mutation and periodicity, and the relationship between ET0 and its main influencing factors is discussed. The result shows that the tendency of seasonal and interannual ET0 in Zoige Wetland is presented as an increasing trend on the time scale, especially in summer, autumn and interannual scale; in terms of spatial scale, it exhibits an increasing trend to varying degrees, and this trend of ET0 is very significant among the whole region in autumn, and run through the east and west in the interannual scale; meanwhile, Zoige Wetland showed a more obvious trend of warming and drying. For the mutation of ET0, the mutation years of spring, winter and annual scale ET0 were all around 2002, while the mutation occurred in summer and autumn around 1988 and 1997, respectively. For the periodicity of ET0, the main period of ET0 in spring, summer, autumn and the interannual scales may be 28 years, and 22 years in winter. In addition, the first major influencing factor of ET0 is temperature in spring, autumn, winter and interannual scales, while the sunshine hours in summer; among different stations, the first one is relative humidity, which are the most obvious in Zoige and Hongyuan stations in winter. The study is expected to provide a scientific basis for further exploring the climate and ecological environment changes in the Zoige wetland.
[1]Allen M R, Ingram W J, 2002. Constraints on future changes in climate and the hydrologic cycle[J]. Nature, 419(6903):224-232.
[2]Allen R G, Pereira L S, Raes D, et al, 1998. Crop evapotranspiration-Guidelines for computing crop water requirements[M]. Fao, Rome: FAO Irrigation and drainage paper 56.
[3]Bai J, Lu Q, Zhao Q, et al, 2013. Effects ofalpine wetland landscapes on regional climate on the Zoige Plateau of China[J]. Advances in Meteorology (5):1-7.
[4]Dong Z, Hu G, Yan C, et al, 2009. Aeolian desertification and its causes in the Zoige Plateau of China's Qinghai-Tibetan Plateau[J]. Environmental Earth Sciences, 59(8):1731-1740.
[5]Gu L L, Hu Z Y, Yao J M, et al, 2017. Actual and reference evapotranspiration in a cornfield in the Zhangye Oasis, Northwestern China[J]. Water, 9(7):499.
[6]Immerzeel W W, van Beek L P, Bierkens M F, 2010. Climate change will affect the Asian water towers[J]. Science, 328(5984):1382-1385.
[7]Jones P D, 1988. Hemispheric surface air temperature variations:Recent trends and an update to 1987[J]. Journal of Climate, 1(6):654-660.
[8]Krause P, Biskop S, Helmschrot J, et al, 2010. Hydrological system analysis and modelling of the Nam Co basin in Tibet[J]. Advances in Geosciences, 27:29-36.
[9]Li F, Zhang Y, Xu Z, et al, 2013. The impact of climate change on runoff in the southeastern Tibetan Plateau[J]. Journal of Hydrology, 505:188-201.
[10]Li L, Hao Z C, Wang J H, et al, 2008. Impact of future climate change on runoff in the head region of the Yellow River[J]. Journal of Hydrologic Engineering, 13(5):347-354.
[11]Mu W B, Yu F L, Xie Y B, et al, 2014. The copula function-based probability characteristics analysis on seasonal drought & flood combination events on the North China Plain[J]. Atmosphere, 5(4):847-869.
[12]Oki T, Kanae S, 2006. Global hydrological cycles and world water resources[J]. Science, 313(5790):1068-1072.
[13]Wang B, Bao Q, Hoskins B, et al, 2008. Tibetan Plateau warming and precipitation changes in East Asia[J]. Geophysical Research Letters, 35(14):63-72.
[14]Yang K, Ye B, Zhou D, et al, 2011. Response of hydrological cycle to recent climate changes in the Tibetan Plateau[J]. Climatic Change, 109(3/4):517-534.
[15]Zhang Y, Liu C, Tang Y, et al, 2007. Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau[J]. Journal of Geophysical Research Atmospheres, 112:D12110.
[16]白军红, 欧阳华, 崔保山, 等, 2008.近40年来若尔盖高原高寒湿地景观格局变化[J].生态学报, 28(5):2245-2252.
[17]白军红, 欧阳华, 徐惠风, 等, 2004.青藏高原湿地研究进展[J].地理科学进展, 23(4):1-9.
[18]丁一汇, 2008.人类活动与全球气候变化及其对水资源的影响[J].中国水利, 2(8):20-27.
[19]郭洁, 李国平, 2007.若尔盖气候变化及其对湿地退化的影响[J].高原气象, 26(2):422-428.
[20]李志威, 孙萌, 游宇驰, 等, 2017.若尔盖高原实际蒸散量变化规律研究[J].生态环境学报, 26(8):1317-1324.
[21]刘红玉, 白云芳, 2006.若尔盖高原湿地资源变化过程与机制分析[J].自然资源学报, 21(5):810-818.
[22]刘莉红, 郑祖光, 2003.近百余年我国气温变化的突变点分析[J].南京气象学院学报, 26(3):378-383.
[23]刘蓉, 文军, 王欣, 2016.黄河源区蒸散发量时空变化趋势及突变分析[J].气候与环境研究, 21(5):503-511.
[24]穆文彬, 李传哲, 刘佳, 等, 2017.大清河流域水循环影响因素演变特征分析[J].水利水电技术, 48(2):4-11.
[25]强皓凡, 靳晓言, 赵璐, 等, 2018.基于相对湿润度指数的近56年若尔盖湿地干湿变化[J].水土保持研究, 25(1):172-177.
[26]王富强, 王若雁, 孙美琪, 2018.基于涡度相关观测的寒区滨河湿地蒸散发特征分析[J].华北水利水电大学学报(自然科学版), 39(1):57-62.
[27]王建兵, 王素萍, 汪治桂, 2015. 1971~2010年若尔盖湿地潜在蒸散量及地表湿润度的变化趋势[J].地理科学, 35(2):245-250.
[28]魏凤英, 2007.现代气候统计诊断与预测技术(第二版)[M].北京:气象出版社.
[29]谢琰, 文军, 刘蓉, 等, 2018.太阳辐射和水汽压差对黄河源区高寒湿地潜热通量的影响研究[J].高原气象, 37(3):614-625. DOI:10.7522/j.issn.1000-0534.2017.00063.
[30]徐宗学, 和宛琳, 2006.近40年黄河源区气候要素分布特征及变化趋势分析[J].高原气象, 25(5):906-913.