Based on the dual temperature threshold method, the precipitation and temperature data of four national meteorological stations in Xilin River Basin from 1969 to 1979 were used to calculate the relationship between the snowfall ratio and the daily average temperature, and the critical temperature of snowfall discrimination in the Xilin River Basin was determined, and the snowfall identification index equation was fitted.. According to the critical temperature and identification equation, the snowfall of each station in the basin was estimated from 1980 to 2016, and the Mann-Kendall test was used to test the snowfall of 1969-2016 to find the typical mutation point of snowfall in the basin. A simulation scheme for temperature and precipitation changes was established for the boundary, and their contribution to the change of snowfall was quantified. The results showed that the snowfall identification method combined with the critical temperature and snowfall identification equation can better estimate the snowfall at each station in the Xilin River Basin, and the correlation coefficient is above 0.89 with an error of less than 4%. The trend of estimated snowfall between the stations in the basin is inconsistent in the Xilin River from 1980 to 2016, and the snowfall in the whole basin shows a trend of increasing eastward and decreasing westward. According to the results of Mann-Kendall mutation test, the typical mutation point of the basin was taken in 1980. and the simulation scheme of temperature and precipitation change was established. It was concluded that the temperature increase had a negative contribution to the snowfall change during the snowfall period, and the increase of precipitation contributed positively to the snowfall. The combination of temperature and precipitation will promote the increase in snowfall.
WANG Fei
,
ZHU Zhongyuan
,
HAO Xiangyun
,
HAN Dongdong
,
WANG Huimin
,
WANG Qiong
. Snowfall Identification and Evolution Trend in Xilin River Basin[J]. Plateau Meteorology, 2019
, 38(4)
: 725
-733
.
DOI: 10.7522/j.issn.1000-0534.2018.00119
[1]Bocchieri J R, 2009. The objective use of upper air soundings to specify precipitation type[J]. Monthly Weather Review, 108(5):596-603.
[2]Chen R, Lu S, Kang E, et al, 2007. A distributed water-heat coupled model for mountainous watershed of an inland river basin of Northwest China (Ⅰ) model structure and equations[J]. Environmental Geology, 53(6):1299-1309.
[3]Czys R R, Scott R W, Tang K C, et al, 1996. A physically based, nondimensional parameter for discriminating between locations of freezing rain and ice pellets[J]. Weather & Forecasting, 11(4):591-598.
[4]Dai A, 2008. Temperature and pressure dependence of the rain-snow phase transition over land and ocean[J]. Geophysical Research Letters, 35(12):62-77.
[5]Ding B, Yang K, Qin J, et al, 2014. The dependence of precipitation types on surface elevation and meteorological conditions and its parameterization[J]. Journal of Hydrology, 513(11):154-163.
[6]Liu S, Yan D, Qin T, et al, 2016. Precipitation phase separation schemes in the Naqu River basin, eastern Tibetan plateau[J]. Theoretical & Applied Climatology, 131(1/2):1-13.
[7]Martyn P C, Andrew G S, Andrew P B, et al, 2006. Assimilation of snow covered area information into hydrologic and land-surface models[J]. Advances in Water Resources, 29(8):1209-1221.
[8]Yang Z L, Dickinson R E, Robock A, et al, 1997. Validation of the snow submodel of the biosphere-atmosphere transfer scheme with Russian snow cover and meteorological observational data[J]. Journal of Climate, 10(2):353-373.
[9]宇如聪, 李建, 陈昊明, 等, 2014.中国大陆降水日变化研究进展[J].气象学报, 72(5):948-968.
[10]董振华, 张继权, 佟志军, 等, 2016.锡林郭勒盟草原雪灾社会影响评价[J].自然灾害学报, 25(2):59-68.
[11]冯新灵, 罗隆诚, 冯自立, 2009.中国近50年降水变化趋势及突变的Hurst指数试验[J].干旱区地理, 326):859-866.
[12]韩春坛, 陈仁升, 刘俊峰, 等, 2010.固液态降水分离方法探讨[J].冰川冻土, 32(2):249-256.
[13]胡爱军, 李宁, 祝燕德, 等, 2010.论气象灾害综合风险防范模式——2008年中国南方低温雨雪冰冻灾害的反思[J].地理科学进展, 29(2):159-165.
[14]胡顺起, 曹张驰, 陈滔, 2017.山东省南部一次极端特大暴雪过程诊断分析[J].高原气象, 36(4):984-992. DOI:10.7522/j.issn.1000-0534.2016.00134.
[15]黄小燕, 李耀辉, 冯建英, 等, 2015.中国西北地区降水量及极端干旱气候变化特征[J].生态学报, 35(5):1359-1370.
[16]金成浩, 韩京龙, 2013.基于Mann-Kendall检验的嘎呀河流域降水变化趋势及突变分析[J].吉林水利, (12):62-66.
[17]刘少华, 严登华, 王浩, 等, 2018.怒江上游流域降雪识别及其演变趋势和原因分析[J].水利学报, 49(2):254-262.
[18]李喜仓, 王冀, 杨晶, 2013.内蒙古东部牧区极端降雪变化特征及其成因[J].地理科学, 33(7):884-889.
[19]漆梁波, 张瑛, 2012.中国东部地区冬季降水相态的识别判据研究[J].气象, 38(1):96-102.
[20]宋小园, 朱仲元, 张圣微, 等, 2016.锡林河流域气候变化特征诊断分析[J].干旱区资源与环境, 30(4):151-158.
[21]隋玉秀, 杨景泰, 王健, 等, 2015.大连地区冬季降水相态的预报方法初探[J].气象, 41(4):464-473.
[22]许美玲, 梁红丽, 金少华, 等, 2015.昆明冬季降水相态识别判据研究[J].气象, 41(4):474-479.
[23]席小康, 朱仲元, 宋小园, 等, 2016.锡林河流域融雪径流时间变化特征与成因分析[J].水土保持研究, 23(6):150-153.
[24]尹云鹤, 吴绍洪, 陈刚, 2009. 1961-2006年我国气候变化趋势与突变的区域差异[J].自然资源学报, 24(12):2147-2157.
[25]张俊兰, 彭军, 2017.北疆春季降水相态转换判识和成因分析[J].高原气象, 36(4):939-949. DOI:10.7522/j.issn.1000-0534.2016.00094.
[26]张琳娜, 郭锐, 曾剑, 等, 2013.北京地区冬季降水相态的识别判据研究[J].高原气象, 32(6):DOI:10.7522/j.issn.1000-0534.2012.00147.
[27]张志杰, 王志楠, 2017.呼和浩特市降水相态识别判据研究[J].内蒙古林业科技, 43(1):42-47.