Numerical Simulation on the Influence of Bohai Sea to a Squall Line Process

  • TAO Ju ,
  • YI Xiaoyuan ,
  • ZHAO Haikun ,
  • ZHANG Wenlong
Expand
  • Nanjing University of Information Science and Technology, College of Atmospheric Sciences, Nanjing 210044, Jiangsu, China;Tianjin Meteorological Observatory, Tianjin 300074, China;Beijing Institute of urban meteorology, China Meteorological Administration, Beijing 100089, China

Received date: 2018-12-29

  Online published: 2019-08-28

Abstract

To investigate the impact of sea surface to a squall line over Bohai sea in the evening on 25 July 2016, which developed over sea、moved slowly and had a long life, Weather Research and Forecasting (WRFV3.8) model is used. This squall line develops over sea, moves slowly and has a long life time. The control runs and a sensitivity experiment is designed. Results show that:(1) WRF model can simulate the formation process of the squall line reasonably. East wind blowing from the sea is the key factor of convection before the system goes into the sea. In enhancement phase of squall line in Bohai Sea, the north wind and the southwest wind converge at sea and form the strong convergence zones, leading to the reorganizing and developing of squall line. North cold air goes down south and triggers the release of unstable stratification energy, providing energy for convection. The pulsation of the southwest low level jet has a positive effect in the development of the system. Strong vertical wind shear in the deep and low level creates a favorable environment for squall line to forming and developing into linear convection; (2) Smooth Bohai Sea surface strengthens the wind near the ground. Southwest wind enhances after going into the sea, strengthening the convergence with north ground wind, and making the convection more active. This effect also hinders the movement of convergence and slows down the speed of squall line moving southward; (3) Bohai Sea surface has less sensible heat and latent heat exchange than land surface at daytime, turbulence activity in sea surface is weak. Latent heat exchange of Bohai Sea is higher, but boundary layer height is lower, that is not conducive to the enhancement of low vertical wind shear, hindering the development of squall line.

Cite this article

TAO Ju , YI Xiaoyuan , ZHAO Haikun , ZHANG Wenlong . Numerical Simulation on the Influence of Bohai Sea to a Squall Line Process[J]. Plateau Meteorology, 2019 , 38(4) : 756 -772 . DOI: 10.7522/j.issn.1000-0534.2019.00035

References

[1]Colby F P, 1984. Convective inhibition as a predicter of convection during AVE-SESAME Ⅱ[J]. Monthly Weather Review, 112(11):2239-2252.
[2]Carbone R E, Conway J W, Crook N A, et al, 1990. The generation and propagation of a nocturnal squall line. Part I:Observations and implications for mesoscale predictability[J]. Monthly Weather Review, 118:19-26.
[3]Fovell R G, Ogura Y, 1988. Numerical simulation of a midlatitude squall line in two dimentions[J]. Journal of the Atmospheric Sciences, 45:3846-3879.
[4]Moncrieff M W, Miller M J, 1976. The dynamic and simulation of tropical cumulonimbus and squall lines[J]. Quarterly Journal of the Royal Meteorological Society, 203(432):373-394.
[5]Meng Z, Yan D, Zhang Y, 2013. General features of squall lines in East China[J]. Monthly Weather Review, 141:445-470.
[6]Segal M, Schreiber W E, Kallos G, et al, 1989. The impact of CROP areas in Northeast Colorado on midsummer mesoscale thermal circulations[J]. Monthly Weather Review, 117:809-824.
[7]Skamarock W C, Klemp J B, Dudhia J, et al, 2008. A description of the advanced research WRF version 3[M]. NCAR Technical Note NCAR/TN-4755+STR, DOI:10.5065/D68S4MVH.
[8]Trier S B, Chen F, Manning K W, et al, 2008. Sensitivity of the PBL and precipitation in 12-Day simulations of warm-season convection using different land surface models and soil wetness conditions[J]. American Meteorological Society, 136:2320-2343.
[9]Xu L, Raman S, Madala R V, et al, 1996. A non-hydrostatic modeling study of surface moisture effects on mesoscale convection induced by sea breeze circulation[J]. Meteorology and Atmospheric Physics, 58(1/4):103-122.
[10]曹春燕, 江江崟, 孙向明, 2006.一次大暴雨过程低空急流脉动与强降水关系分析[J].气象, 32(6):102-106.
[11]丁一汇, 李鸿洲, 章名立, 等, 1982.我国飑线发生条件的研究[J].大气科学, 6(1):18-27.
[12]胡明宝, 2015.风廓线雷达探测与应用[M].北京:气象出版社.
[13]刘淑媛, 郑永光, 陶祖钰, 2003.利用风廓线雷达资料分析低空急流的脉动与暴雨关系[J].热带气象学报, 19(3):285-290. DOI:10.16032/j. issn. 1004-4965.2003.03.008.
[14]梁建宇, 孙建华, 2012.2009年6月一次飑线过程灾害性大风的形成机制[J].大气科学, 36(2):316-336. DOI:10.3878/j. issn. 1006-9895.
[15]蒙伟光, 李江南, 王安宇, 等, 2005.凝结加热和地表通量对华南中尺度对流系统(MCS)发生发展的影响[J].热带气象学报, 21(4):368-376. DOI:10.16032/j. issn. 1004-4965.2005.04.004.
[16]平凡, 罗哲贤, 2007.热带对流热量与水汽收支的数值模拟研究[J].地球物理学报, 50(5):1351-1361.
[17]盛春岩, 李建华, 范苏丹, 等, 2014.地形及下垫面对渤海大风影响的数值研究[J].气象, 40(11):1338-1344.
[18]田晨, 周伟灿, 苗峻峰, 2012.中国地区下垫面特征对强对流天气影响研究进展[J].气象科技, 40(2):207-212.
[19]王艳, 张义军, 马明, 等, 2010.卫星观测的我国近海海域闪电分布特征[J].应用气象学报, 21(2):157-163.
[20]汪雅, 苗峻峰, 谈哲敏, 2013.宁波地区海陆下垫面差异对雷暴过程影响的数值模拟[J].气象学报, 71(6):1146-1159. DOI:10.11676/qxxb2013.088.
[21]王艳春, 王红艳, 刘黎平, 2016.三维变分方法反演风场的效果检验[J].高原气象, 35(4):1087-1101. DOI:10.7522/j. issn. 1000-0534.2015.00022.
[22]王彦, 高守亭, 梁钊明, 2014.渤海湾海风锋触发雷暴的观测和模拟分析[J].高原气象, 33(3):848-854. DOI:10.7522/j. issn. 1000-0534.2013.00030.
[23]杨薇, 苗峻峰, 谈哲敏, 2014.太湖地区湖陆风对雷暴过程影响的数值模拟[J].应用气象学报, 25(1):59-70.
[24]姚日升, 涂小萍, 杜坤, 等, 2015.两次冰雹过程边界层气象要素变化特征[J].高原气象, 34(6):1677-1689. DOI:10.7522/j. issn. 1000-0534.2014.00072.
[25]郑永光, 陈炯, 陈明轩, 等, 2007.北京及周边地区5-8月红外云图亮温的统计学特征及其天气学意义[J].科学通报, 52(14):1700-1706.
[26]张建军, 王咏青, 钟玮, 2016.飑线组织化过程对环境垂直风切变和水汽的响应[J].大气科学, 40(4):689-702. DOI:10.3878/j. issn. 1006-9895.1505.14337.
[27]郑淋淋, 孙建华, 2016.风切变对中尺度对流系统强度和组织结构影响的数值试验[J].大气科学, 40(2):324-340. DOI:10.3878/j. issn. 1006-9898.1505.14311.
[28]张艳玲, 寿绍文, 张玲, 等, 2009.能量参数在南通地区强对流天气中的应用[J].气象科学, 29(3):362-367.
[29]张桂莲, 常欣, 黄晓璐, 等, 2018.东北冷涡背景下超级单体风暴环境条件与雷达回波特征[J].高原气象, 37(5):1364-1374. DOI:10.7522/j. issn. 1000-0534.2018.00068.
[30]曾勇, 杨莲梅, 2018.新疆西部一次极端暴雨事件的成因分析[J].高原气象, 37(5):1220-1232. DOI:10.7522/j. issn. 1000-0534.2018.00014.
Outlines

/