The Physical Mechanism and Strong Precipitation in Northeast China Analysis during Typhoon "Lionrock" Merging into Extratropical Cyclone Process

  • LIU Shuo ,
  • LI Deqin ,
  • SAI Han ,
  • TIAN Li ,
  • ZHAO Ming
Expand
  • Shenyang Central Meteorological Observatory, Shenyang 110000, Liaoning, China;Dalian Meteorological Observatory, Dalian 116001, Liaoning, China

Received date: 2018-08-29

  Online published: 2019-08-28

Abstract

Based on conventional ground data, typhoon best track from Shanghai Typhoon Institute, sounding data, black body temperature equivalent (TBB) of FY-2 meteorological satellite from National Satellite Meteorological Center, and high-resolution NCEP/NCAR global reanalysis data, the physical development mechanism and strong precipitation mechanism in Northeast China during typhoon Lionrock (1610) merging into extratropical cyclone process was analyzed. The result indicated that symmetric tropical cyclone cloud system developed into asymmetric baroclini cloudsystem, and finally evolved into mature extratropical cyclone cloud system. Meanwhile, Lionrock entered into the strong vertical wind shear environment gradually, and typhoon vortex circulation, water-vapor transfer and vertical movement showed remarkable asymmetric and vertical westward tilt feature. Furthermore, warm-core structure was destroyed, water-vapor transfer gradually went away from typhoon circulation. Under the interaction between upper and low-level jet, extratropical cyclone appeared obvious frontogenesis for the positive vertical vorticity advection, which enhanced the development of extratropical cyclone. Under the co-effect of Lionrock and extratropical cyclone, enhanced dynamic, water vapor and energy transport caused by development cyclone, was the main reason for the heavy rain in northeast China. It was found that precipitation in Northeast China mainly occurred in warm advection, high value of thickness gradient had good direct a indicative function. It was also found that heavy precipitation was influenced by strong upper levels divergence and low levels convergence of dynamic and water vapor, meanwhile corresponded to strong temperature advection and vertical upward motion. Long time duration of rainfall and ending slow, was related with weak dry cold air intrusion from high to low level slowly. The precipitation process was sustainability, with relatively strong convective precipitation occurring locally.

Cite this article

LIU Shuo , LI Deqin , SAI Han , TIAN Li , ZHAO Ming . The Physical Mechanism and Strong Precipitation in Northeast China Analysis during Typhoon "Lionrock" Merging into Extratropical Cyclone Process[J]. Plateau Meteorology, 2019 , 38(4) : 804 -816 . DOI: 10.7522/j.issn.1000-0534.2018.00109

References

[1]Braun S A, 2006. High-resolution simulation of hurricane Bonnie (1998). Part Ⅱ:Water budget[J]. Journal of the Atmospheric Sciences, 63(1):43-64.
[2]Chen L S, 2001. Tropical cyclone structure and structure change[C]//Proceeding of the Second WMO International Workshop WMO/TD, 45-56.
[3]Chen L S, 2002. Tropical cyclone landfall processes-observing and forecasting rainfall[C]//Topic Chairman and Rapporteur Reports of the Fifth WMO International Workshop on Tropical Cyclones WMO/TD, 201-217.
[4]Harr P A, Elsberry E L, 2000. Extratropical transition of tropical cyclones over the western North Pacific. Part Ⅰ:Evolution of structural characteristics during the transition process[J]. Monthly Weather Review, 128:2613-2633.
[5]Klein P M, Harr P A, Elsberry R L, 2000. Extratropical transition of western North Pacific tropical cyclones:An overview and conceptual model of the transformation stage[J]. Weather and Forecasting, 15:373-395.
[6]Klein P M, Harr P A, Elsberry R L, 2002. Extratropical transition of western North Pacific tropical cyclones:Midlatitude contributions to intensification[J]. Monthly Weather Review, 130 (9):2240-2259.
[7]Mcbride J L, Zehr R, 1981. Observational analysis of tropical cyclone formation. Part Ⅱ:Comparison if non-developing versus developing systems[J]. Journal of the Atmosphreric Sciences, 38(6):1132-1151.
[8]Zehr R M, 2003. Environmental vertical wind shear with shear with hurricane Bertha(1996)[J]. Weather and Forecasting, 18(2):345-356.
[9]陈联寿, 丁一汇, 1979.西太平洋台风概论[M].北京:科技出版社, 237-241.
[10]陈联寿, 罗哲贤, 李英, 2004.登陆热带气旋研究的进展[J].气象学报, 62(5):541-548.
[11]陈联寿, 徐祥德, 王继志, 等, 2002.热带气旋动力学引论[M].北京:气象出版社, 155-178.
[12]程正泉, 林良勋, 刘燕, 等, 2014.粤东台风"浣熊"大暴雨的辐散风动能分析[J].高原气象, 33(2):557-566. DOI:10.7522/j.issn.1000-0534.2013.00019.
[13]胡春梅, 端义宏, 余晖, 等, 2005.华南地区热带气旋登陆前强度突变的大尺度环境诊断分析[J].热带气象学报, 21(4):377-382. DOI:10.16032/j.issn.1004-4965.2005.04.005.
[14]蒋尚成, 张镡, 刘鸣盛, 等, 1981.登陆北上减弱的台风所导致的暴雨——半热系统暴雨[J].气象学报, 39(1):18-27.
[15]李英, 陈联寿, 2005.湿地边界层通量影响热带气旋登陆维持和降水的数值试验[J].气象学报, 63(5):683-693.
[16]李英, 陈联寿, 雷小途, 2013. Winnie(9711)台风变性加强过程中的降水变化研究[J].大气科学, 37(3):623-633. DOI:10.3878/j.issn.1006-9895.2012.11213.
[17]梁军, 李英, 张胜军, 等, 2014.辽东半岛热带气旋暴雨的中尺度结构及复杂地形的影响[J].高原气象, 33(4):1154-1163. DOI:10.7522/j.issn.1000-0534.2012.00202.
[18]钮学新, 杜惠良, 刘建勇, 2005.0216号台风降水及其影响降水机制的数值模拟试验[J].气象学报, 63(1):57-63.
[19]孙力, 董伟, 药明, 等, 2015.1215号"布拉万"台风暴雨及降水非对称性分布的成因分析[J].气象学报, 73(1):36-49. DOI:10.11676/qxxb2015.004.
[20]王承伟, 齐铎, 徐玥, 等, 2017.冷空气入侵台风"灿鸿"引发的东北暴雨分析[J].高原气象, 36(5):1257-1266. DOI:10.7552/j.issn.1000-0534.2016.00082.
[21]王鹏云, 田佰军, 黄伟, 1994.9216号台风登陆后的不对称结构和暴雨[J].热带气象学报, 10(1):69-77. DOI:10.16032/j.issn.1004-4965.1994.01.009.
[22]徐明, 余锦华, 赖安伟, 等, 2009.环境风垂直切变与登陆台风强度变化关系的统计分析[J].暴雨灾害, 28(4):339-344.
[23]许爱华, 叶志成, 欧阳里程, 等, 2006. "云娜"台风登陆后的路径和降水的诊断分析[J].热带气象学报, 22(3):229-236. DOI:10.16032/j.issn.1004-4965.2006.03.004.
[24]颜玲, 周玉淑, 刘宣飞, 2017.1410号台风Matmo登陆前后的动热力结构演变和水汽输送特征分析[J].大气科学, 41(2):289-301. DOI:10.3878/j.issn.1006-9895.1607.15329.
[25]杨仁勇, 闵锦忠, 郑艳, 2014.强台风"纳沙"引发的特大暴雨过程数值试验[J].高原气象, 33(3):753-761. DOI:10.7522/j.issn.1000-0534.2013.00047.
[26]余贞寿, 高守亭, 任鸿翔, 2008.台风"海棠"特大暴雨数值模拟研究[J].气象学报, 65(6):864-876.
[27]赵宇, 李静, 杨成芳, 2016.与台风"海鸥"相关暴雨过程的水汽和干侵入研究[J].高原气象, 35(2):444-459. DOI:10.7522/j.issn.1000-0534.2015.00061.
Outlines

/