Using the hourly precipitation data of 111 national stations during 1991 to 2017 and the daily precipitation data of 115 national stations during 1971 to 2017 in summer (from June to August) in Inner Mongolia, the characteristics about the duration of short-time strong rainfall processes(STSRP) and daily rainfall(light rain, moderate rain, heavy rain, torrential rain, excessive torrential rain, extreme torrential rain) processes were studied. The results show that:(1) The longest duration of STSRP is 38 hours and the duration about 3 hours percentage is most in Inner Mongolia. Duration within 12 hours of STSRP has maximum deviation at 16:00 (Beijing time, after the same) to 18:00, but duration more than 12 hours of STSRP has maximum deviation at 03:00 in Inner Mongolia. Furthermore, the longer the duration of STSRP, the lower the extreme value of the hourly precipitation in Inner Mongolia. Since 2010, the frequencies of STSRP have increased in Inner Mongolia. Frequencies of 4~6 hours and 7~12 hours of STSRP increase obviously. But frequencies of 1~3 hours of STSRP reduce evidently in Inner Mongolia. (2) The frequencies of light rain process and torrential rain process have decreased in Inner Mongolia. However, in recent years, the long duration rainfall process in the light rain process, the moderate rain process and the torrential rain process are extremely excessive. The first extreme torrential rain process occurred in 2017. In Inner Mongolia, the longest duration of the extreme torrential rain is 2 days, but the longest duration of other daily rainfall processes is 10~15 days. The longest duration of the heavy rain is 15 days. Lasted 1 day of the light rain process and the moderate rain process have maximum proportion, but lasted 2 days have maximum proportion about the heavy rain process and the torrential rain process. The extreme precipitation of the daily rainfall process is easy to occur in the first three day. (3) Spatial distribution about the frequency and extreme value of duration hours or days, as well as extreme value of accumulative precipitation of STSRP and daily rainfall processes increase from west to east, the highest value appear in the eastern part of Inner Mongolia.
[1]Bai A J, Zhai P M, Liu X D, 2007. Climatology and trends of wet spells in China[J]. Theoretical and Applied Climatology, 88(3/4):139-148. DOI:10.1007/s00704-006-0235-7.
[2]Yu R C, Xu Y P, Zhou T J, et al, 2007. Relation between rainfall duration and diurnal variation in the warm season precipitation over central eastern China[J]. Geophysical Research Letters, 34(13):173-180. DOI:10.1029/2007GL030315, 2007.
[3]Yu R C, Li J, Yuan W H, et al, 2010. Changes in characteristics of late-summer precipitation over eastern China in the past 40 years revealed by hourly precipitation data[J]. Journal of Climate, 23(23):3390-3396. DOI:10.1175/2010JCLI3454.1.
[4]Zolina O, Simmer C, Gulev S K, et al, 2010. Changing structure of European precipitation:Longer wet periods leading to more abundant rainfalls[J]. Geophysical Research Letters, 37(6), 460-472. DOI:10.1029/2010GL042468.2010.
[5]常煜, 2015.内蒙古5-9月小时强降水时空变化特征[J].中国沙漠, 35(3):735-743. DOI:10.7522/j.issn.1000-694X. 2014.00066.
[6]常煜, 2016a.内蒙古典型暴雨过程的中尺度雨团观测分析[J].应用气象学报, 27(1):56-66. DOI:10.11898/1001-7313.20160106.
[7]常煜, 韩经纬, 2015.一次阻塞形势下的内蒙古暴雨过程特征分析[J].高原气象, 34(3):741-752. DOI:10.7522/j.issn.1000-0534.2014.00033.
[8]常煜, 李秀娟, 陈超, 等, 2016b.内蒙古一次暴雨过程中尺度特征及成因分析[J].高原气象, 35(2):432-443. DOI:10.7522/j.issn.1000-0534.2014.00155.
[9]常煜, 马素艳, 仲夏, 2018.内蒙古夏季典型短时强降水中尺度特征[J].应用气象学报, 29(2):232-244. DOI:10.11898/1001-7313.20180209.
[10]何光碧, 曾波, 郁淑华, 等, 2016.青藏高原周边地区持续性暴雨特征分析[J].高原气象, 35(4):865-874. DOI:10.7522/j.issn.1000-0534.2015.00081.
[11]黄玉霞, 王宝鉴, 王研峰, 等, 2017.甘肃省夏季暴雨日数特征及其与大气环流关系[J].高原气象, 36(1), 183-194. DOI:10.7522/j.issn.1000-0534.2015.00118.
[12]计晓龙, 吴昊旻, 黄安宁, 等, 2017.青藏高原夏季降水日变化特征分析[J].高原气象, 36(5):1188-1200. DOI:10.7522/j.issn.1000-0534.2016.00119.
[13]康岚, 郝丽萍, 蒲吉光, 等, 2016.对两次持续性暴雨过程落区预报的探讨[J].高原气象, 35(6):1540-1550. DOI:10.7522/j.issn.1000-0534.2015.00101.
[14]李建, 宇如聪, 孙溦, 2013.从小时尺度考察中国中东部极端降水的持续性和季节特征[J].气象学报, 71(4):652-659. DOI. 10.11676/qxxb2013.052.
[15]李娟, 孙建华, 张元春, 等, 2016.四川盆地西部与东部持续性暴雨过程的对比分析[J].高原气象, 35(1):64-76. DOI:10.7522/j.issn.1000-0534.2014.00150.
[16]刘奕辰, 周伟灿, 常煜, 等, 2018.山东半岛东海岸一次台风暴雨的成因研究[J].高原气象, 37(6):1684-1695. DOI:10.7522/J.issn,1000-0534.2018.00113.
[17]马梁臣, 孙力, 王宁, 2017.东北地区典型暴雨个例的水汽输送特征分析[J].高原气象, 36(4):960-970. DOI:10.7522/j.issn.1000-0534.2016.00078.
[18]马素艳, 韩经纬, 斯琴, 等, 2015.长生命史冷涡背景下内蒙古地区强对流天气分析[J].高原气象, 34(5):1435-1444. DOI:10.7522/j.issn.1000-0534.2014.00098.
[19]施晓晖, 温敏, 2015.中国持续性暴雨特征及青藏高原热源的影响[J].高原气象, 34(3):611-620. DOI:10.7522/j.issn.1000-0534.2014.00039.
[20]王承伟, 齐铎, 徐玥, 等, 2017.冷空气入侵台风"灿鸿"引发的东北暴雨分析[J].高原气象, 36(5):1257-1266. DOI:10.7522/j.issn.1000-0534.2016.00082.
[21]王晖, 隆霄, 温晓培, 等, 2017.2012年宁夏"7·29"大暴雨过程的数值模拟研究[J].高原气象, 36(1):268-281. DOI:10.7522/j.issn.1000-0534.2016.00017.
[22]于文勇, 李建, 宇如聪, 2012.中国地区降水持续性的季节变化特征[J].气象, 38(4):392-401. DOI:10.7519/j.issn.1000-0526.2012.4.002.
[23]翟盘茂, 李蕾, 周佰铨, 等, 2016.江淮流域持续性极端降水及预报方法研究进展[J].应用气象学报, 27(5):631-640. DOI:10.11898/1001-7313.20160511.
[24]翟盘茂, 廖圳, 陈阳, 等, 2017.气候变暖背景下降水持续性与相态的研究综述[J].气象学报, 75(4):527-538. DOI:10.11676/qxxb2017.047.
[25]张芹, 王洪明, 张秀珍, 等, 2018.2017年山东雨季首场暖区暴雨的特征分析[J].高原气象, 37(6):1696-1704. DOI:10.7522/j.issn.1000-0534.2018.00052.