Based on the conventional meteorological observation data, NCEP 0.25°×0.25° analysis data and the high-resolution data from the microwave radiometers and the wind profile radars, the precipitation phase of rain and snow process in the Sha-Ying river basin occurred on 21 February 2017 was analyzed using diagnostic and statistical methods. The results showed that the transition of precipitation phase was caused by continuous cooling in the lower layers, which was induced by northerly cold air at cold high bottom below 925 hPa, in the background of the rain and snow weather caused by interaction of the upper air trough and easterly cold air. In the earlier stage of this process, there was a strong warm advection below 700 hPa and a shallow cold advection below 900 hPa. The temperature structure of the whole layer was cold-warm-cold-warm, which led to the ice crystals melting into raindrops while falling. In the medium and latter stages, the strongly development of cold advection led to temperature rapidly decreasing, so the entire temperature layer turned to cold, and the phase state turned to snow. Although there was a warm layer in the local area, the phase was also snow as the warm layer was shallow and the lower cold layer was deep. The height of the 0℃ layer decreased significantly during the rain-snow transition. The 0℃ layer was above the LCL in the rainfall, and fell below the LCL in the snowfall. The bright band echo at 0℃ layer showed a significant change in the precipitation phase transition, whose height gradually decreased. The temperature and humidity profiles, the cloud base height and liquid water from the microwave radiometer all showed significant changes in the rain-snow transition. The liquid water showed rapid increase in the rain-snow transition. The wind profile qualitatively reflected the cold air moving southwards continuously, and the cold lower layer became thicker, led to the increase of precipitation intensity and the change of phase state. The wind profile velocity quantitatively reflected the difference between rainfall and snowfall process. The speed range was 1.5~7.0 m·s-1 in the rainfall, while the speed range in the snowfall was 0.25~1.5 m·s-1. The falling speed decreased obviously during the rain-snow transition, which could be used to monitor and forecast the transitions of precipitation phase.
[1]Heppner P G, 1992. Snow versus rain:Looking beyond the "Magic" number[J]. Weather and Forecasting, 7:683-691.
[2]Kain J S, Goss S M, Baldwin M E, 2000. The melting effect as a factor in precipitation type forecasting[J]. Weather and Forecasting, 15:700-714.
[3]Ralph F M, Neiman P J, Van d K D W, et al, 1995. Using spectral moment data from NOAA's 404-MHz radar wind profilers to observe precipitation[J]. Bulletin of the American Meteorological Society, 76(10):1717-1740.
[4]Wagner A J, 1957. Mean temperature from 1000 mb to 500 mb as a predictor of precipitation type[J]. Bulletin of the American Meteorological Society, 10:584-590.
[5]董保举, 张晔, 徐安伦, 2009.高原地区风廓线雷达资料评估[J].气象科技, 37(5):580-583.
[6]董新宁, 方德贤, 周国兵, 等, 2017.两种垂直风廓线的对比及应用Ⅰ:一致性分析[J].高原气象, 36(3):788-800. DOI:10.7522/j.issn.1000-0534.2016.00043.
[7]方德贤, 董新宁, 周国兵, 等, 2017.两种垂直风廓线的对比及应用Ⅱ:不同降水条件下风廓线特征[J].高原气象, 36(4):971-983. DOI:10.7522/j.issn.1000-0534.2016.00091.
[8]顾映欣, 陶祖钰, 1991. UHF多普勒风廓线雷达资料的初步分析和应用[J].气象, 17(1):29-33.
[9]顾佳佳, 武威, 2015.2014年2月47日河南暴雪过程的环流特征及其持续原因[J].暴雨灾害, 34(2):117-125.
[10]何彩芬, 黄旋旋, 卢晶晶, 2009.基于多普勒天气雷达产品的降雪及冻雨综合分析[J].应用气象学报, 20(6):767-771.
[11]韩珏靖, 陈飞, 张臻, 等, 2015. MP-3000A型地基微波辐射计的资料质量评估和探测特征分析[J].气象, 41(2):226-233.
[12]孔照林, 赵放, 彭霞云, 等, 2016.风廓线下落速度在浙江冬季降水相态识别中的应用[J].气象, 42(9):1090-1095.
[13]李江波, 李根娥, 裴雨杰, 等, 2009.一次春季强寒潮的降水相态变化分析[J].气象, 35(7):87-94.
[14]李德俊, 唐仁茂, 向玉春, 等, 2012.基于多种探测资料对武汉一次短时暴雪天气的监测分析[J].高原气象, 31(5):1386-1392.
[15]刘建忠, 张蔷, 2010.微波辐射计反演产品评价[J].气象科技, 38(3):325-331.
[16]刘红燕, 2011.三年地基微波辐射计观测温度廓线的精度分析[J].气象学报, 69(4):719-728.
[17]廖晓农, 张琳娜, 何娜, 等, 2013.2012年3月17日北京降水相态转变的机制讨论[J].气象, 39(1):28-38.
[18]马振升, 2013.河南省区域暴雪的天气学分型及应用[J].气象与环境科学, 36(1):54-60.
[19]漆梁波, 张瑛, 2012.中国东部地区冬季降水相态的识别判据研究[J].气象, 38(1):96-102.
[20]施红蓉, 李峰, 吴蕾, 等, 2014.风廓线雷达对降水相态变化的观测分析[J].气象, 40(10):1259-1265.
[21]魏东, 孙继松, 雷蕾, 等, 2011.用微波辐射计和风廓线资料构建探空资料的定量应用可靠性分析[J].气候与环境研究, 16(6):697-706.
[22]王亮, 王春明, 2010.一次雨夹雪转暴雪天气过程的微物理模拟研究[J].气象与环境学报, 26(2):31-39.
[23]王欣, 卞林根, 彭浩, 等, 2005.风廓线仪系统探测试验与应用[J].应用气象学报, 16(5):693-698.
[24]吴蓁, 赵培娟, 苏爱芳, 等, 2009.2008年河南持续低温、冻雨和暴雪成因[J].气象与环境科学, 32(1):9-15.
[25]许爱华, 乔林, 詹丰兴, 等, 2006.2005年3月一次寒潮天气过程的诊断分析[J].气象, 32(3):49-55.
[26]杨晓亮, 王咏青, 杨敏, 等, 2014.一次暴雨与特大暴雪并存的华北强降水过程分析[J].气象, 40(12):1446-1454.
[27]杨舒楠, 徐珺, 何立富, 等, 2017.低层温度平流对华北雨雪天气过程的降水相态影响分析[J].气象, 43(6):665-674.
[28]张备, 尹东屏, 孙燕, 等, 2014.一次寒潮过程的多种相态降水机理分析[J].高原气象, 33(1):190-198. DOI:10.7522/j.issn.1000-0534.2012.00171.
[29]张琳娜, 郭锐, 曾剑, 等, 2013.北京地区冬季降水相态的识别判据研究[J].高原气象, 32(6):1780-1786. DOI:10.7522/j.issn.1000-0534.2012.00147.
[30]张俊兰, 彭军, 2017.北疆春季降水相态转换判识和成因分析[J].高原气象, 36(4):939-949. DOI:10.7522/j.issn.1000-0534.2016.00094.
[31]郑丽娜, 杨成芳, 刘畅, 2016.山东冬半年回流降雪形势特征及相关降水相态[J].高原气象, 35(2):520-527. DOI:10.7522/j.issn.1000-0534.2015.00055.
[32]张小雯, 郑永光, 吴蕾, 等, 2017.风廓线雷达资料在天气业务中的应用现状与展望[J].气象科技, 45(2):285-297.