Relationships between Boundary Layer Height and Different Disaster Weathers in North-Central Qinghai Province

  • MA Yuancang ,
  • LI Yanying ,
  • YANG Jiping ,
  • ZENG Ting ,
  • ZHANG Aiping ,
  • ZHANG Chunyan
Expand
  • Qinghai Meteorological Observatory, Xining 810001, Qinghai, China;Key laboratory of Arid Climatic Change and Reducing Disaster of Gansu Province/Key Open Laboratory of Arid Climatic Change and Disaster Reduction of CMA/Institute of Arid Meteorology; China Meteorological Administration; Lanzhou 730020, Gansu, China;Wuwei meteorological bureau in GanSu province, Wuwei 733000, Gansu, China;Minqinmeteorological bureau of Gansu province, Minqin 733399, Gansu, China

Received date: 2018-07-10

  Online published: 2019-10-28

Abstract

Using routine data of daily high altitude pressure, temperature and humidity at 07:00 (Beijing Time, after the same) and every 50 m infilling data of daily high altitude pressure, temperature, humidity and wind at 19:00 in 2013-2017, T-logP method and 5 point smooth potential temperature gradient method were used to calculate the boundary layer height (BLH) of four stations in Qinghai, namely Mangya, Golmud, Dulan and Xining, respectively. Based on the surface hourly and daily data from 2006 to 2017, the influence factors and their relationships with disaster weathers were further analyzed. The results showed that the BLHs were higher in the northwest than in the southeast over research region, and higher in the spring of March and May, and the highest in April that was more than 4500 m. The BLH was mainly related to the maximum ground temperature difference, maximum wind speed, daily temperature range and precipitation. The bigger ground temperature difference, the higher the wind speed and the smaller humidity were, the higher the BLH was. In the BLHs of wind and sand, the highest height of dust was 3578 m in March, and that in other wind-sand weather was between 3800~4000 m in April. The longer the dust storm lasted, the higher the BLH was. The sandstorm in the Plateau was mainly concentrated in the afternoon and night from April to June, which was 3100~4200 m from April to May. Precipitation had a great influence on BLH, with the increase of rainfall intensity, the BLH decreased. The maximum height of light rain, moderate rain and heavy rain was 3354, 1855 and 1300 m respectively, further corresponding pressure of the boundary layer was 480~640 hPa of light rain, 590~720 hPa of moderate rain and between 650~710 hPa of heavy rain. The BLH of high temperature reached 5210 m in June and more than 3600 m in JulyAugust, while the thunderstorm decreased from 5050 m in April, 2100 m from May to June and to 1100 m from July to September. The BLH of thunderstorm was lower because more than 95% of thunderstorms were accompanied by precipitation from May to October.

Cite this article

MA Yuancang , LI Yanying , YANG Jiping , ZENG Ting , ZHANG Aiping , ZHANG Chunyan . Relationships between Boundary Layer Height and Different Disaster Weathers in North-Central Qinghai Province[J]. Plateau Meteorology, 2019 , 38(5) : 1048 -1057 . DOI: 10.7522/j.issn.1000-0534.2018.00136

References

[1]白虎志, 董安祥, 李栋梁, 等, 2005.青藏高原及青藏铁路沿线大风沙尘日数时空特征[J].高原气象, 24(3):311-315.
[2]白淑英, 史建桥, 相栋, 等, 2013.近50年青海降水时空格局变化[J].干旱区资源与环境, 6:148-153.
[3]韩熠哲, 马伟强, 王炳赟, 等, 2017.青藏高原近30年降水变化特征分析[J].高原气象, 36(6):1477-1486. DOI:10.7522/j.issn.1000-0534.2016.00125.
[4]计晓龙, 吴昊旻, 黄安宁, 等, 2017.青藏高原夏季降水日变化特征分析[J].高原气象, 36(5):1188-1200. DOI:10.7522/j.issn.1000-0534.2016.00119.
[5]侯梦玲, 王宏, 赵天良, 等, 2017.京津冀一次重度雾霾天气能见度及边界层关键气象要素的模拟研究[J].大气科学, 41(6):1177-1190. DOI:10.3878/j.issn.1006-9895.1703.16211.
[6]巨克英, 2012.近27年来青海省气象灾害损失初步分析[J].青海气象(3):2-5.
[7]孔尚成, 戴升, 王敏, 2015.1961-2013年青海高原雷暴日数及雷电灾害变化特征研究[J].冰川冻土, 37(4):888-897.
[8]李岩瑛, 张强, 陈英, 等, 2014.中国西北干旱区沙尘暴源地风沙大气边界层特征[J].中国沙漠, 34(1):206-214.
[9]李岩瑛, 张强, 胡兴才, 等, 2012.西北干旱区和黄土高原大气边界层特征对比及其对气候干湿变化的响应[J].冰川冻土, 34(5):1048-1058.
[10]李岩瑛, 张强, 张爱萍, 等, 2016.干旱半干旱区边界层变化特征及其影响因子分析[J].高原气象, 35(2):385-396. DOI:10.7522/j.issn.1000-0534.2014.00153.
[11]李岩瑛, 钱正安, 薛新玲, 等, 2009.西北干旱区夏半年深厚的混合层与干旱气候形成[J].高原气象, 28(1):46-54.
[12]李岩瑛, 张强, 薛新玲, 等, 2011.民勤大气边界层特征与沙尘天气的气候学关系研究[J].中国沙漠, 31(3):757-764.
[13]廖菲, 邓华, 李旭, 2017.基于风廓线雷达的广东登陆台风边界层高度特征研究[J].大气科学, 41(5):949-959.
[14]刘维成, 张强, 傅朝, 2017.近55年来中国西北地区降水变化特征及影响因素分析[J].高原气象, 36(6):1533-1545. DOI:10.7522/j.issn.1000-0534.2017.00081.
[15]阮悦, 阮征, 魏鸣等, 2018.基于C-FMCW雷达的高原夏季对流云垂直结构分析研究[J].高原气象, 37(1):93-105. DOI:10.7522/j.issn.1000-0534.2017.00025.
[16]王式功, 杨德保, 尚可政, 等, 2002.城市空气污染预报研究[M].兰州: 兰州大学出版社, Ⅱ: 93-101.
[17]王田寿, 李生辰, 2007.青海省短时强降水(强暴雨)特征分析[J].青海科技, 4:17-20.
[18]谢欣汝, 游庆龙, 林厚博, 2018.近10年青藏高原中东部地表相对湿度减少成因分析[J].高原气象, 37(3):642-650. DOI:10.7522/j.issn.1000-0534.2017.00091.
[19]徐桂荣, 崔春光, 2009.青藏高原东部及下游关键区大气边界层高度的观测分析[J].暴雨灾害, 28(2):112-118.
[20]宋星灼, 张宏升, 刘新建, 等, 2006.青藏高原中部地区不稳定大气边界层高度的确定与分析[J].北京大学学报(自然科学版), 42(3):328-333.
[21]徐桂荣, 崔春光, 周志敏, 等, 2014.利用探空资料估算青藏高原及下游地区大气边界层高度[J].暴雨灾害, 33(3):217-227.
[22]张翠华, 言穆弘, 董万胜, 等, 2005.青藏高原雷暴天气层结特征分析[J].高原气象, 24(5):741-747.
[23]张宏升, 2004.青藏高原中部地区边界层高度的确定[A].中国气象学会.推进气象科技创新加快气象事业发展——中国气象学会2004年年会论文集(下册)[C].北京: 2004: 1.
[24]赵煜飞, 张强, 余予, 等, 2017.中国小时风速数据集研制及在青藏高原地区的应用[J].高原气象, 36(4):930-938. DOI:10.7522/j.issn.1000-0534.2017.00001.
[25]周文, 杨胜朋, 蒋熹, 2018.利用COSMIC掩星资料研究青藏高原地区大气边界层高度[J].气象学报, 76(1):117-133.
[26]卓嘎, 徐祥德, 陈联寿, 等, 2002.青藏高原边界层高度特征对大气环流动力学效应的数值试验[J].应用气象学报, 13(2):163-169.
Outlines

/