The Difference Analysis of Structure between Two Long-Lived Isolated Supercell Storms

  • ZHANG Yujie ,
  • YUAN Wenhua ,
  • ZHANG Wu
Expand
  • Support Center for Atmospheric Sounding Technology, Shandong Provincial Meteorological Service, Jinan 250031, Shandong, China;Zaozhuang Meteorological Bureau, Zaozhuang 277000, Shandong, China;Key Laboratory for Semi-Arid Climate Change with the Ministry of Education, School of Atmospheric, Lanzhou 730000, Gansu, China

Received date: 2019-03-15

  Online published: 2019-10-28

Abstract

Based on the Doppler weather radar data of Jinan,Shandong Province and Shijiazhuang,Hebei Province,and combined with the weather facts and sounding observation data,we analyzed the evolution characteristics,environmental parameters and airflow structure of two severe disastrous supercell storms on September 15,2013 and May 12,2008 in middle mountainous area of Shandong and Xingtai,Hebei.The results show that:Storms 0915 and 0512 are both generated under strong Northwest Airflow environment,with strong instability and vertical wind shear above moderate intensity.During the peak stage,there are obvious differences in storm parameters,the mean values of storm parameters vertical integrated liquid water based on cells (C-VIL),the maximum reflectivity (DBZM) and the strong center height (HT) of storm 0915 are significantly greater than those of 0512,the intensity of cyclone rotation in storm 0915 is obviously greater than that in storm 0512.The difference between convective available potential energy (CAPE) and vertical wind shear is the key factor leading to the difference between storm parameters and wind rotation intensity.CAPE in 0915 process is greater than 0512,which determines that the maximum updraft velocity in the storm is greater than 0512.0915 process has stronger vertical wind shear,which makes its updraft rotational intensity significantly greater than that of storm 0512.Strong rotational updraft is conducive to the hanging and maintenance of storm nuclei,resulting in stronger hail weather.

Cite this article

ZHANG Yujie , YUAN Wenhua , ZHANG Wu . The Difference Analysis of Structure between Two Long-Lived Isolated Supercell Storms[J]. Plateau Meteorology, 2019 , 38(5) : 1058 -1068 . DOI: 10.7522/j.issn.1000-0534.2019.00055

References

[1]Browning K A, 1962a.Cellular structure of convective storms[J].Meteorological Magazine, 91(1085):341-350.
[2]Browning K A, Ludlam F H, 1962b.Airflow in convective storms[J].Quarterly Journal of the Royal Meteorological Society, 88(376):117-135.DOI:10.1002/qj.49708837602.
[3]Donaldson R J J, 1970.Vortex signature recognition by a doppler radar[J].Journal of Applied Meteorology, 9(4):661-670.
[4]Doswell C A, Burgess D W, 1993.Tornadoes and toraadic storms: A review of conceptual models[M]//The Tornado: Its Structure, Dynamics, Prediction, and Hazards.American Geophysical Union, 161-172.
[5]Doswell C A Ⅲ, 2001.Severe convective storms[J].Meteorological Monographs, 28(50):1-26.
[6]Fujita T T, 1963.Analytical meso-meteorology:A review, severe local storms[J].Meteorological Monographs, 27:77-125.
[7]Moller A R, Doswell C A Ⅲ, Foster M P, et al, 1994.The operational recognition of supercell thunderstorm environments and storm structures[J].Weather and Forecasting, 9:327-347.DOI:10.1175/1520-0434(1994)009<0327:torost>2.0.co; 2.
[8]Waldvogel A, Schmid W, Grimm P, 1979.Criteria for the detection of hail cells[J].Journal of Applied Meteorology, 18:1521-1525.
[9]Witt A, Eilts M D, Stumpf G J, et al, 1998.An enhanced hail detection algorithm for the WSR-88D[J].Weather and Forecasting, 13:286-303.DOI:10.1175/1520-0434(1998)013<0286:aehdaf>2.0.co; 2.
[10]陈秋萍, 陈齐川, 冯晋勤, 等, 2015."2012·4·11"两个强降雹超级单体特征分析[J].气象, 41(1):25-33.DOI:10.7519/j.issn.1000-0526.2015.01.003.
[11]刁秀广, 杨晓霞, 朱君鉴, 等, 2008.一次长寿命风暴的CINRAD/SA雷达反射率及中气旋产品特征与流场结构分析[J].高原气象, 27(3):657-667.
[12]刁秀广, 杨传风, 李静, 等, 2011.济南地区超级单体强度和流场结构分析[J].高原气象, 30(2):489-497.
[13]刁秀广, 朱君鉴, 2009.三次超级单体风暴雷达产品特征及气流结构差异性分析[J].气象学报, 67(1):133-146.DOI:10.3321/j.issn:0577-6619.2009.01.014.
[14]冯建民, 徐阳春, 李凤霞, 等, 2001.宁夏川区强对流天气雷达判别及预报指标检验[J].高原气象, 20(4):447-452.
[15]冯晋勤, 俞小鼎, 傅伟辉, 等, 2012.2010年福建一次早春强降雹超级单体风暴对比分析[J].高原气象, 31(1):239-250.
[16]郭艳, 2010.大冰雹指标TBSS在江西的应用研究[J].气象, 36(8):40-46.
[17]廖向华, 周毓荃, 唐余学, 等, 2010.重庆一次超级单体风暴的综合分析[J].高原气象, 29(6):1556-1564.
[18]李晔, 宋雪明, 2008.一次冰雹天气多普勒雷达回波特征分析[J].气象与减灾研究, 31(3):70-72.
[19]闵晶晶, 刘还珠, 曹晓钟, 等, 2011.天津"6·25"大冰雹过程的中尺度特征及成因[J].应用气象学报, 22(5):525-536.
[20]王福侠, 裴宇杰, 杨晓亮, 等, 2011."090723"强降水超级单体风暴特征及强风原因分析[J].高原气象, 30(6):1690-1700.
[21]王秀明, 俞小鼎, 周小刚, 等, 2012."6·3"区域致灾雷暴大风形成及维持原因分析[J].高原气象, 31(2):504-514.
[22]许东蓓, 苟尚, 肖玮, 等, 2018.两种类型短时强降水形成机理对比分析-以甘肃两次短时强降水过程为例[J].高原气象, 37(2):524-534.DOI:10.7522/j.issn.1000-0534.2017.00056.
[23]俞小鼎, 王迎春, 陈明轩, 等, 2005.新一代天气雷达与强对流天气预警[J].高原气象, 24(3):456-464.
[24]俞小鼎, 郑媛媛, 张爱民, 等, 2006a.安徽一次强烈龙卷的多普勒天气雷达分析[J].高原气象, 25(5):914-924.
[25]俞小鼎, 姚秀萍, 熊廷南, 等, 2006b.多普勒天雷达原理于业务应用[M].北京:气象出版社, 109-116.
[26]赵俊荣, 郭金强, 杨景辉, 等, 2011.一次致灾冰雹的超级单体风暴雷达回波特征分析[J].高原气象, 30(6):1681-1689.
[27]张桂莲, 常欣, 黄晓璐, 等, 2018.东北冷涡背景下超级单体风暴环境条件与雷达回波特征[J].高原气象, 37(5):1364-1374.DOI:10.7522/j.issn.1000-0534.2018.00068.
[28]郑媛媛, 俞小鼎, 方翀, 等, 2004a.一次典型超级单体风暴的多普勒天气雷达观测分析[J].气象学报, 62(3):317-328.
[29]郑媛媛, 俞小鼎, 方翀, 等, 2004b.2003年7月8日安徽系列龙卷的新一代天气雷达分析[J].气象, 30(1):38-45.
[30]朱平, 俞小鼎, 2019.青藏高原东北部一次罕见强对流天气的中小尺度系统特征分析[J].高原气象, 38(1):1-13.DOI:10.7522/j.issn.1000-0534.2018.00070.
Outlines

/