Using the data of automatic weather stations,the conventional observation and NCAR/NCEP reanalysis data,the influence system configuration,the characteristics of three wind speed fluctuation and dynamic Condition have been analyzed,In order to provide experience for the prediction of gale in special terrain conditions in Western Hexi corridor.The main results are as follows:With the development and strengthening of blocking anticyclone and Cold vortex abnormal moving southward,cool advection and downward momentum transfer of high low altitude are the key factors for the formation of continued gale in the west of the Hexi Corridor; The first gale fluctuation is mainly related to the ground pressure-swing wind,and the momentum downward transmission plays an important role in the second and third gale fluctuations; The descending motion with convergent flow field at the center and left side of the upper jet stream exit region can effectively transmit the momentum of high altitude below 500 hPa,The momentum exchange in the development of unstable stratification and the vertical motion caused by the thermal and dynamic conditions in the lower layer make the momentum in the middle and lower levels move down to the near ground.During the transit of the high-level trough,the configuration of the negative vorticity advection at high level and positive vorticity advection at low level formed by the forward inclining trough is very beneficial to the momentum spreaded downward from higher level,the greater the vorticity advection gradient in the vertical direction and the lower the gradient of large value center,the more likely it is to cause the occurrence of extreme wind near the surface in the west of the Hexi Corridor.
ZHANG Wenjun
,
LI Jian
,
YANG Qinghua
,
TIAN Qingming
,
WANG Haiyan
. Analysis on Dynamic Condition of Three Wind Speed Fluctuation Events during An Extreme Gale Process in the West of the Hexi Corridor[J]. Plateau Meteorology, 2019
, 38(5)
: 1082
-1090
.
DOI: 10.7522/j.issn.1000-0534.2018.00129
[1]曹玲, 董安祥, 张德玉, 等, 2005.河西走廊春季大风、沙尘暴的成因差异初探[J].气象科技, 33(1):53-57.
[2]丁荣, 张德玉, 梁俊宁, 等, 2006.甘肃河西走廊中部近45a来大风沙尘暴气候背景分析[J].中国沙漠, 26(5):792-796.
[3]董安祥, 胡文超, 张宇, 等, 2014.河西走廊特殊地形与大风的关系探讨[J].冰川冻土, 36(2):347-351.DOI:10.7522/j.issn.1000-0240.2014.0042.
[4]段圣泽, 张英华, 顾宇, 2018.冬季厄尔尼诺对酒泉2016年夏季降水的影响[J].高原气象, 37(2):545-552.DOI:10.7522/j.issn.1000-0534.2017.00053.
[5]范俊红, 郭树军, 李宗涛, 2009.河北省中南部一次沙尘暴的动力条件分析[J].高原气象, 28(4):795-802.
[6]黄彬, 杨超, 朱男男, 等, 2017.渤海冷空气大风过程中3次风速波动的原因分析[J].气象科技, 45(3):499-507.DOI:10.19517/j.1671-6345.20160389.
[7]姜学恭, 李彰俊, 程丛兰, 等, 2010.地面加热对沙尘暴数值模拟结果的影响研究[J].中国沙漠, 30(1):182-192.
[8]姜学恭, 沈建国, 刘景涛, 等, 2003.导致一例强沙尘暴的若干天气因素的观测和模拟研究[J].气象学报, 61(5):606-620.
[9]李耀辉, 沈洁, 赵建华, 等, 2014.地形对民勤沙尘暴发生发展影响的模拟研究-以一次特强沙尘暴为例[J].中国沙漠, 34(3):849-860.DOI:10.7522/j.issn.1000-694X.2013.00385.
[10]沈建国, 姜学恭, 孙照渤, 2007.地形对沙尘暴的影响及敏感试验研究[J].高原气象, 26(5):1013-1022.
[11]盛春岩, 杨晓霞, 2012."09·4·15"渤海和山东强风过程的动力学诊断分析[J].气象, 38(3):162-273.
[12]孙永刚, 孟雪峰, 荀学义, 等, 2014.温度平流在沙尘暴和大风天气预报中的差异分析[J].气象, 40(11):1302-1307.DOI:10.7519/j.issn.1000-0526.2014.11.002.
[13]谭志强, 桑建人, 纪晓玲, 等, 2017.宁夏一次大风扬沙天气过程机制分析[J].干旱区地理, 40(6):1134-1142.
[14]王伏村, 许东蓓, 王宝鉴, 等, 2012.河西走廊一次特强沙尘暴的热力动力特征分析[J].气象, 38(8):950-959.
[15]王慧清, 孟雪峰, 2015.2013年春季内蒙古中东部地区一次吹雪过程天气学特征研究[J].中国农学通报, 31(19):206-214.
[16]王建鹏, 沈桐立, 刘小英, 等, 2006.西北地区一次沙尘暴过程的诊断分析及地形影响的模拟试验[J].高原气象, 25(2):259-267.
[17]肖贻青, 2017.乌拉尔山阻塞与北大西洋涛动的关系及其对中国冬季天气的影响[J].高原气象, 36(6):1499-1511.DOI:10.7522/j.issn.1000-0534.2016.00109.
[18]杨晓玲, 周华, 杨梅, 等, 2017.河西走廊东部大风日数时空分布及其对沙尘天气的影响[J].中国农学通报, 33(16):123-128.
[19]杨晓玲, 丁文魁, 袁金梅, 等, 2012.河西走廊东部大风气候特征及预报[J].大气科学学报, 35(1):121-127.
[20]尹尽勇, 曹越男, 赵伟, 2011.2010年4月27日莱州湾大风过程诊断分析[J].气象, 37(7):897-905.
[21]于波, 荆浩, 孙继松, 等, 2017.北京夏季一次罕见偏南大风天气的成因分析[J].高原气象, 36(6):1674-1681.DOI:10.7522/j.issn.1000-0534.2016.00142.
[22]云静波, 姜学恭, 孟雪峰, 等, 2013.冷锋型和蒙古气旋型沙尘暴过程若干统计特征的对比分析[J].高原气象, 32(2):423-434.DOI:10.7522/j.issn.1000-0534.2012.00041.
[23]赵庆云, 张武, 吕萍, 等, 2012.河西走廊"2010·04·24"特强沙尘暴特征分析[J].高原气象, 31(3):688-696.
[24]朱男男, 刘彬贤, 2015.一次引发黄渤海大风的爆发性气旋过程诊断分析[J].气象与环境学报, 31(6):59-67.DOI:10.3969/j.issn.1673-503X.2015.06.008.