The mesoscale model WRF with improved surface roughness is used to simulate the variation characteristics of surface turbulent flux over the Qinghai-Tibetan Plateau and its surrounding areas from 2004 to 2013. The results show that sensible heat flux in the central and southeastern parts of the Qinghai-Tibetan Plateau has increased by 9.952 W·m-2·(10a)-1 and 14.595 W·m-2·(10a)-1 since 2004 to 2013, respectively, sensible heat in other regions of the Qinghai-Tibetan Plateau decreased by -4.473 W·m-2·(10a)-1. The Hengduan Mountains increased by 9.928 W·m-2·(10a)-1, the Yunnan-Guizhou Plateau increased by 9.868 W·m-2·(10a)-1 and the Jiangnan Hilly Region increased by 15.177 W·m-2·(10a)-1; The sensible heat in other surrounding areas decreased, the order of magnitude is -10.26 W·m-2·(10a)-1. The latent heat increased weakly in the eastern part of the Qinghai-Tibetan Plateau[1.175 W·m-2·(10a)-1], and decreased in other parts of the Qinghai-Tibetan Plateau[-3.762 W·m-2·(10a)-1], and weakened in the Sichuan Basin on the eastern side of the Qinghai-Tibetan Plateau, the Bay of Bengal on the southern side and the surrounding northern areas, respectively, -0.27, -2.416 and -2.287 W·m-2·(10a)-1; The latent heat flux increased in different degrees in the surrounding areas. There were strong increases in Jiangsu and Zhejiang provinces in southeastern China[11.385 W·m-2·(10a)-1], increased in Indian Peninsula[2.988 W·m-2·(10a)-1], in Myanmar[9.287 W·m-2·(10a)-1] and in Loess Plateau[1.160 W·m-2·(10a)-1], but decreased in Yunnan-Guizhou Plateau[-2.705 W·m-2·(10a)-1].
LI Maoshan
,
YIN Shucheng
,
LIU Xiaoran
,
Lü Zhao
,
SONG Xingyu
,
MA Yaoming
,
SUN Fanglin
. Numerical Simulation of the Variation of the Turbulent Fluxes on the Qinghai-Tibetan Plateau and its Surrounding Area from 2004 to 2013[J]. Plateau Meteorology, 2019
, 38(6)
: 1140
-1148
.
DOI: 10.7522/j.issn.1000-0534.2018.00145
[1]Boots W R, Kuang Z M, 2013. Sensitivity of the South Asian monsoon to elevated and non-elevated heating[J]. Scientific Reports, 3(6119):1192. DOI:10.1038/srep01192.
[2]Chen F, Dudhia J, 2001. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I:Model implementation and sensitivity[J], Monthly Weather Review, 129, 569-585, DOI:10.1175/1520-0493(2001)129 < 0569:CAALSH>2.0. CO; 2.
[3]Duan A M, Wang M, Lei Y, et al, 2013. Trends in summer rainfall over China Associated with the Tibetan Plateau sensible heat source during 1980-2008[J]. Journal of Climate, 26(1):261-275.
[4]Duan A M, Wu G X, 2008. Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part I:Observations[J]. Journal of Climate. 21:3149-3164.
[5]Duan A M, Xiao Z, 2015. Does the climate warming hiatus exist over the Tibetan Plateau[J]. Scientific Reports, 5:13711. DOI:10.1038/srep13711.
[6]Dudhia J, 1989. Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model[J]. Journal of the Atmospheric Sciences, 46:3077-3107.
[7]Hong S Y, Noh Y, Dudhia J, 2006. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly Weather Review, 134:2318-2341.
[8]Hong Y S, Lim J, 2006. The WRF Single-Moment 6-Class Microphysics Scheme (WSM6)[J]. Journal of the Korean Meteorological Mociety, 42:129-151.
[9]Janjic Z, 2000. Comments on development and evaluation of a convection scheme for use in climate models[J]. Journal of the Atmospheric Sciences, 57:3686.
[10]Li M S, Babel W, Tanaka K, et al, 2012. Note on the application of planar-fit rotation for non-omnidirectional sonic anemometers[J]. Atmospheric Measurements Techniques Discussions, 5(5):7323-7340. DOI:10.5194/amtd-5-7323-2012.
[11]Liu Y, Wu G, Hong J, et al, 2012. Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing:Ⅱ. Change[J]. Climate Dynamics, 39:1183-1195.
[12]Wang C H, Shi H X, Hu H L, et al, 2015. Properties of cloud and precipitation over the Tibetan Plateau[J]. Advances in Atmospheric Sciences, 32(11):1504-1516. DOI:10.1007/s00376-015-4254-0.
[13]Yang K, Wu H, Qin J, et al, 2014. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle:A review[J]. Global and Planetary Change, 112:79-91.
[14]贲海荣, 周顺武, 乔钰, 等, 2017.一个新的青藏高原热力指数的构建及其应用[J].高原气象, 36(6):1487-1498. DOI:10.7522/j.issn.1000-0534.2017.00009.
[15]陈家宜, 王介民, 光田宁, 1993.一种确定地表粗糙度的独立方法[J].大气科学, 17(1):21-26.
[16]陈学龙, 马耀明, 李茂善, 等, 2008.藏北地区近地层大气和土壤特征量分析[J].高原气象, 27(5):941-948.
[17]李栋梁, 章基嘉, 吴洪宝, 1997.夏季青藏高原下垫面感热异常的诊断研究[J].高原气象, 16(4):367-375.
[18]李国平, 段廷扬, 吴贵芬, 2003.青藏高原西部的地面热源强度及地面热量平衡[J].地理科学, 23(1):13-18.
[19]李宏毅, 肖子牛, 朱玉祥, 2018.藏东南草地下垫面地气通量交换日变化的数值模拟[J].高原气象, 37(2):443-454. DOI:10.7522/j.issn.1000-0534.2017.00052.
[20]李茂善, 马耀明, 胡泽勇, 等, 2004.藏北高原那曲地区边界层结构初步分析[J].高原气象, 23(5):728-732.
[21]李茂善, 杨耀先, 马耀明, 等, 2012.纳木错(湖)地区湍流数据质量控制和湍流通量变化特征[J].高原气象, 31(4):875-884.
[22]马耀明, 姚檀栋, 王介民, 2006.青藏高原能量和水循环试验研究-GAME/Tibet与CAMP/Tibet研究进展[J].高原气象, 25(2):344-351.
[23]吴国雄, 刘新, 张琼, 等, 2002.青藏高原抬升加热气候效应研究的新进展[J].气候与环境研究, 7(2):184-201.
[24]徐丽娇, 胡泽勇, 赵亚楠, 等, 2019.1961-2010年青藏高原气候变化特征分析[J].高原气象, 38(5):911-919. DOI:10.7522/j.issn.1000-0534.2018.00137.
[25]严晓强, 胡泽勇, 孙根厚, 等, 2018.那曲高寒草地上四种地表通量计算方法的对比[J].高原气象, 37(2):358-370. DOI:10.7522/j.issn.1000-0534.2017.00067.
[26]杨耀先, 李茂善, 胡泽勇, 等, 2013.藏北高原高寒草甸地表特征参数动态变化规律及其对地表通量的影响[J].高原气象, 32(3):626-636. DOI:10.7522/j.issn.1000-0534.2013.00199.
[27]杨丽薇, 高晓清, 惠小英, 等, 2017.青藏高原中部聂荣亚寒带半干旱草地近地层湍流特征研究[J], 高原气象, 36(4):875-885.DOI:10.7522/j.issn.1000-0534.2016.00089.
[28]郑汇璇, 胡泽勇, 孙根厚, 等, 2019.那曲高寒草地总体输送系数及地面热源特征[J].高原气象, 38(3):497-506. DOI:10.7522/j.issn.1000-0534.2019.00024.