Analysis of the Influence of the Qinghai-Tibetan Plateau Surface Energy Change on the Formation of the Plateau Vortex in Summer

  • LI Li ,
  • Lü Shihua ,
  • FAN Guangzhou
Expand
  • School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China;Yingkou Meteorological Bureau, Yingkou 115001, LiaoNing, China;Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China

Received date: 2018-05-09

  Online published: 2019-12-28

Abstract

To analyze the climate characteristics of Qinghai-Tibetan Plateau surface heat flux and plateau vortex, study the effects of surface heat flux on the vortex activity in the Qinghai-Tibetan Plateau, the spatial and temporal distribution characteristics of surface sensible heat flux, surface latent heat flux and plateau vortex were analyzed by using the ERA-Interim reanalysis data from 1986 to 2015 (four times a day). By means of correlation analysis and synthesis analysis, this paper selected the key area of the summer plateau vortex generation (30.75°N-36°N, 81°E-91.5°E), and discussed the possible connection between the surface sensible heat flux, surface latent heat flux and the frequency of plateau vortex generation. The result shows that:from the characteristics of time variability, in the last 30 years, there were 915 summer plateau vortex generated, with an average of 30.5 times a year, of which 697 were generated in the key area, accounting for 76.18% of the total, and the climate trend rate of it was -0.598 every 10 years, showing a significant downward trend. In the key area, the surface sensible heat flux generally declined, with an decrease rate of -0.704 W·m-2·(10a)-1, while the latent heat flux shows a weak upward trend, with an increase rate of 0.04 W·m-2·(10a)-1. From the perspective of spatial variability, the plateau vortex were mainly distributed in the northern of Tibet and the southwest of Qinghai, the key area corresponds to the larger value region of the surface sensible heat flux average and the smaller value region of the surface latent heat flux average. In summer, the frequency of plateau vortex is positively correlated with surface sensible heat flux and negatively correlated with surface latent heat flux in the west and north of the plateau (especially in the key area). The distribution of surface energy in the key area is obviously different in the years of more plateau vortex and less. When the surface sensible heat flux in the key area is stronger than the climate average, it is easier to produce plateau vortex; however, when the surface latent heat flux in the key area is stronger than the climate average, it is more difficult to produce plateau vortex, and vice versa. Therefore, both in time and space, the relation between the plateau vortex generating frequency was positively correlated with the surface sensible heat flux, and negatively correlated with the surface latent heat flux in summer.

Cite this article

LI Li , Lü Shihua , FAN Guangzhou . Analysis of the Influence of the Qinghai-Tibetan Plateau Surface Energy Change on the Formation of the Plateau Vortex in Summer[J]. Plateau Meteorology, 2019 , 38(6) : 1172 -1180 . DOI: 10.7522/j.issn.1000-0534.2018.00154

References

[1]Cui Y, Wang C H, 2009. Comparison of sensible and latent heat fluxes During the transition season over the western Tibetan Plateau from reanalysis datasets[J]. Progress in Natural Science, 19(6):719-726.
[2]Dell'osso L, Chen S J, 1986. Numerical experiments on the genesis of vortices over the Qinghai-Xizang Plateau[J]. Tellus, 38A:236-250.
[3]Shen R J, Reiter E R, Bresch J F, 1986. Numerical simulation of the development of vortices over the Qinghai-Xizang Plateau[J]. Meteorology & Atmospheric Physics, 35(1/2):70-95.
[4]陈伯民, 钱正安, 张立盛, 1996.夏季青藏高原低涡形成和发展的数值模拟[J].大气科学, 20(4):491-502.
[5]崔洋, 常倬林, 余莲, 等, 2017.青藏高原春季地表非绝热加热异常对东亚夏季风强度的影响[J].干旱气象, 35(1):1-11.
[6]丁治英, 刘京雷, 吕君宁, 1994.600 hPa高原低涡生成机制的个例探讨[J].高原气象, 13(4):411-418.
[7]董元昌, 李国平, 2015.大气能量学揭示的高原低涡个例结构及降水特征[J].大气科学, 39(6):1136-1148.
[8]季劲钧, 黄玫, 2006.青藏高原地表能量通量的估计[J].地球科学进展, 21(12):1268-1272.
[9]解晋, 余晔, 刘川, 等, 2018.青藏高原地表感热通量变化特征及其对气候变化的响应[J].高原气象, 37(1):28-42. DOI:10.7522/j.issn.1000-0534.2017.00019.
[10]金蕊, 祁莉, 何金海, 2016.春季青藏高原感热通量对不同海区海温强迫的响应及其对我国东部降水的影响[J].海洋学报, 38(5):83-95.
[11]李国平, 刘红武, 2006.地面热源强迫对青藏高原低涡作用的动力学分析[J].热带气象学报, 22(6):632-637.
[12]李国平, 卢会国, 黄楚惠, 等, 2016.青藏高原夏季地面热源的气候特征及其对高原低涡生成的影响[J].大气科学, 40(1):131-141.
[13]李国平, 赵邦杰, 杨锦青, 2002.地面感热对青藏高原低涡流场结构及发展的作用[J].大气科学, 26(4):519-525.
[14]李国平, 赵福虎, 黄楚惠, 等, 2014.基于NCEP资料的近30年夏季青藏高原低涡的气候特征[J].大气科学, 38(4):756-769.
[15]李黎, 刘海文, 吕世华, 2017.春季西南低涡年际和年代际变化特征分析[J].高原气象, 36(6):1512-1520. DOI:10.7522/j.issn.1000-0534.2017.00016.
[16]李新, 程国栋, 卢玲, 2003.青藏高原气温分布的空间插值方法比较[J].高原气象, 22(6):565-573.
[17]林志强, 2015.1979-2013 ERA-Interim资料的青藏高原低涡活动特征分析[J].气象学报, 73(5):925-939.
[18]林志强, 周振波, 假拉, 2013.高原低涡客观识别方法及其初步应用[J].高原气象, 32(6):1580-1588. DOI:10.7522/j.issn.1000-0534.2012.00153.
[19]刘超, 刘屹岷, 刘伯奇, 2015.6种地表热通量资料在伊朗-青藏高原地区的对比分析[J].气象科学, 35(4):398-404.
[20]罗四维, 杨洋, 吕世华, 1991.一次青藏高原夏季低涡的诊断分析研究[J].高原气象, 10(1):1-12.
[21]青藏高原气象科学研究拉萨会战组, 1981.夏半年青藏高原500毫巴低涡切变线研究[M].北京:科学出版社, 120-155.
[22]宋雯雯, 李国平, 唐钱奎, 2012.加热和水汽对两例高原低涡影响的数值试验[J].大气科学, 36(1):117-129.
[23]田珊儒, 段安民, 王子谦, 等, 2015.地面加热与高原低涡和对流系统相互作用的一次个例研究[J].大气科学, 39(1):125-136.
[24]王鑫, 李跃清, 郁淑华, 等, 2009.青藏高原低涡活动的统计研究[J].高原气象, 28(1):64-71.
[25]武正敏, 陈权亮, 2018.基于多种资料的青藏高原地表感热的对比分析[J].高原山地气象研究, 38(1):1-10.
[26]杨洋, 罗四维, 1992.夏季青藏高原低涡的能量场分析[J].应用气象学报, 3(2):198-205.
[27]叶笃正, 高由禧, 1979.青藏高原气象学[M].北京:科学出版社, 278.
[28]于威, 刘屹岷, 杨修群, 等, 2018.青藏高原不同海拔地表感热的年际和年代际变化特征及其成因分析[J].高原气象, 37(5):1161-1176. DOI:10.7522/j.issn.1000-0534.2018.00027.
[29]郁淑华, 高文良, 2008.青藏高原低涡移出高原的大尺度条件[J].高原气象, 27(6):1276-1287.
[30]郁淑华, 高文良, 2016.高原涡移出高原后持续的对流层高层环流特征[J].高原气象, 35(6):1441-1455. DOI:10.7522/j.issn.1000-0534.2016.00026.
[31]袁秀芹, 2013.世界屋脊环球之巅地球第三极称之为世界屋脊的青藏高原在悄悄迁移吗[J].中国地名, (3):71-72.
[32]张博, 李国平, 2017.基于CFSR资料的青藏高原低涡客观识别技术及应用[J].兰州大学学报:自然科学版, 53(1):106-118.
[33]张浩鑫, 李维京, 李伟平, 2017.春夏季青藏高原与伊朗高原地表热通量的时空分布特征及相互联系[J].气象学报, 75(2):260-274.
[34]张凯荣, 肖天贵, 魏海宁, 等, 2015.2003-2012年高原低涡活动特征统计分析[J].气候变化研究快报, 4(3):106-115.
[35]张恬月, 李国平, 2016.夏季青藏高原地面热源和高原低涡生成频数的日变化[J].沙漠与绿洲气象, 10(20):70-76.
[36]周俊前, 刘新, 李伟平, 等, 2016.青藏高原春季地表感热异常对西北地区东部降水变化的影响[J].高原气象, 35(4):845-853. DOI:10.7522/j.issn.1000-0534.2015.00053.
Outlines

/