Idealized Numerical Simulation of Local Mountain-Valley Winds over Complex Topography

  • JIANG Ping ,
  • LIU Xiaoran ,
  • ZHU Haonan ,
  • ZHU Yu ,
  • ZENG Wenxin
Expand
  • Chongqing Climate Center, Chongqing 401147, China;Sun Yat-sen University, Guangzhou 510275, Guangdong, China

Received date: 2018-10-02

  Online published: 2019-12-28

Abstract

This study used observational data to carry out a high-resolution simulation on mountain-valley winds over complex topography with a computational fluid dynamics model. Results show that the thermal contrast by topography could form the mountain-valley winds. During daytime (T16), the temperature at mountain top increases faster than the foot by the solar radiation, which result in thermal contrast at a same level, and thus forms a clear valley-wind circulation. The near-surface wind is strong at both edges of mountain ridge, and the magnitude can reach 0.15 m·s-1. However, the winds at flat areas of mountain top and valley are not observable. In the evening (T04), the valley keeps warm and mountain top cools by radiation, which forms the mountain wind blowing from the valley. The simulated mountain winds are similar to valley wind, but with a smaller magnitude (~0.1 m·s-1) and an opposite direction. Two sensitive tests show that enlarging the amplitude of the thermal difference between mountain top and valley could enhance valley winds at daytime. The near-surface winds can be as large as 0.4 m·s-1, and the corresponding vertical winds and boundary layer height both increase obviously. However, the mountain-wind circulation do not show similar variations.

Cite this article

JIANG Ping , LIU Xiaoran , ZHU Haonan , ZHU Yu , ZENG Wenxin . Idealized Numerical Simulation of Local Mountain-Valley Winds over Complex Topography[J]. Plateau Meteorology, 2019 , 38(6) : 1272 -1282 . DOI: 10.7522/j.issn.1000-0534.2019.00019

References

[1]Catalano F, Moeng C H, 2010. Large-eddy simulation of the daytime boundary layer in an idealized valley using the weather research and forecasting numerical model[J]. Boundary-Layer Meteorology, 137:49-75. DOI:10.1007/s10546-010-9518-8.
[2]Chen G, Zhu X, Sha W, et al, 2015a. Toward improved forecasts of sea-breeze horizontal convective rolls at super high resolutions[J]. Part Ⅰ:Configuration and verification of a down-scaling simulation system (DS3)[J]. Monthly Weather Review, 143:1849-1872. DOI:10.1175/MWR-D-14-00212.1.
[3]Chen G, Zhu X, Sha W, et al, 2015b. Toward improved forecasts of sea-breeze horizontal convective rolls at super high resolutions[J]. Part Ⅱ:The impacts of land use and buildings[J]. Monthly Weather Review, 143:1873-1894. DOI:10.1175/MWR-D-14-00230.1.
[4]Davidson B, Rao P K, 1963. Experimental studies of the valley-plain wind[J]. Air and Water Pollution, 7 (9/10):907-923.
[5]Jarvis A, Reuter H I, Nelson A, et al, 2008. Hole-filled SRTM for the globe Version 4[DB/OL]. Available from the CGIAR-CSI SRTM 90 m Database. <a href="http://srtm.csi.cgiar.org" target="_blank">http://srtm.csi.cgiar.org</a>.
[6]Jiang P, Wen Z, Sha W, et al, 2017. Interaction between turbulent flow and sea breeze front over urban-like coast in large-eddy simulation[J]. Journal of Geophysical Research-Atmospheres, 122. DOI:10.1002/2016JD026247.
[7]Leonard B P, 1979. A stable and accurate convection modeling procedure based on quadratic upstream interpolation[J]. Computer Methods in Applied Mechanics and Engineering, 19(1):59-98. DOI:10.1016/0045-7825(79)90034-3.
[8]Lilly D K, 1962. On the numerical simulation of buoyant convection[J]. Tellus, 14(2):148-172. DOI:10.1111/j.2153-3490.1962. tb00128. x.
[9]Patankar S V, 1980. Numerical heat transfer and fluid flow[M]. Taylor &amp; Francis Press, 214.
[10]Serafin S, Zardi D, 2010. Daytime heat transfer processes related to slope flows and turbulent convection in an idealized mountain valley[J]. Journal of the Atmospheric Sciences, 67(11):3739-3756. DOI:10.1175/2010JAS3428.1.
[11]Sha W, 2002. Design of the dynamics core for a new-generation numerical model of the local meteorology (in Japanese)[J]. Kaiyo Monthly, 2:107-112.
[12]Sha W, 2008. Local meteorological model based on LES over the Cartesian coordinate and complex surface (in Japanese)[M]. Meteorological Society of Japan Press, 21-26.
[13]Smagorinsky J, 1963. General circulation experiments with the primitive equations[J]. Monthly Weather Review, 91(3):99-164. DOI:10.1175/1520-0493(1963)091&lt;0099:GCEWTP&gt;2.3. CO; 2.
[14]Stull R B, 1988. An introduction to boundary layer meteorology[M]. Dordrecht:Kluwer Academic Publishers, 666.
[15]曹杨, 陈洪滨, 王普才, 2017.声雷达资料可靠性及近地面边界层风场特征分析[J].高原气象, 36(5):1315-1324. DOI:10.7522/j.issn.1000-0534.2016.00100.
[16]程炳岩, 李永华, 唐红玉, 等, 2012.重庆市气候业务技术手册[M].北京:气象出版社, 275.
[17]季国良, 张礼才, 邢连壁, 等, 1984.山谷风与山区污染物的扩散[J].环境研究, 2:10-15.
[18]李晓霞, 黄涛, 王兴, 等, 2017.兰州新区近地层风场时空特征分析[J].高原气象, 36(4):1001-1009. DOI:10.7522/j.issn.1000-0534.2016.00092.
[19]林之光, 李映江, 1985.天山天池山谷风的气候研究[J].地理研究, 4(1):63-70. DOI:10.11821/yj1985010007.
[20]欧阳琳, 阳坤, 秦军, 等, 2017.喜马拉雅山区降水研究进展与展望[J].高原气象, 36(5):1165-1175. DOI:10.7522/j.issn.1000-0534.2016.00111.
[21]蒲朝霞, 邱崇践, 1991.兰州地区山谷风环流的二维数值模拟[J].兰州大学学报(自然科学版), 27(2):169-175. DOI:10.3321/j.issn:0455-2059.1991.02.032.
[22]邱崇践, 蒲朝霞, 1991.山谷风环流控制下的大气污染物输送和扩散过程:二维数值模拟研究[J].高原气象, 10(4):362-370.
[23]寿绍文, 励申申, 姚秀萍, 2003.中尺度气象学[M].北京:气象出版社, 329.
[24]汤懋苍, 1963.祁连山区天气的日变化[J].地理学报, 30(3):197-206. DOI:10.11821/xb196303003.
[25]席世平, 寿绍文, 郑世林, 等, 2007.复杂地形下山谷风的数值模拟[J].气象与环境科学, 30(3):41-44. DOI:10.3969/j.issn.1673-7148.2007.03.009.
[26]许鲁君, 刘辉志, 曹杰, 2014.大理苍山-洱海局地环流的数值模拟[J].大气科学, 38(6):1198-1210. DOI:10.3878/j.issn.1006-9895.1401.13293.
Outlines

/