Evaluation of Drought Condition in the Whole Growth Period of Winter Wheat in Rain-Fed Agricultural Area by Using Long Sequence NDVI Data

  • GUO Ni ,
  • LU Yaling ,
  • HAN Lanying ,
  • ZHANG Moucao
Expand
  • Institute of Arid Meteorology, China Meteorological Administration, Key Laboratory of Arid Climatic Change and Reducing Disaster of Gansu Province/China Meteorological Administration, Lanzhou 730020, Gansu, China;Lanzhou regional meteorological center, Lanzhou 730020, Gansu, China;Xifeng agricultural meteorological experimental station, Xifeng 745000, Gansu, China

Received date: 2019-04-28

  Online published: 2019-12-28

Abstract

Drought is a widespread climate phenomenon throughout the world, as well as one of the natural disasters that seriously impact agricultural. The frequency, intensity and impact of drought are increasing with the global warming, which bring severe challenges to food and ecological security. It is significant for global food and ecological security and sustainable development to strengthen the research and development of drought monitoring and assessment technology to improve the level of drought monitoring and early drought warning. Satellite remote sensing technology can obtain drought information widely, quickly and dynamically; Meanwhile it can cover the shortage of discontinuous and point-to-area of discrete ground sites monitoring space on the ground effectively. In this paper, we select the Longdong rain-fed agricultural area with precipitation of 400~600 mm in the semi-humid climate area in Gansu Province, Northwest China, to evaluate the drought situation of winter wheat in different years using satellite remote sensing data objectively and quantitatively. Based on NASA GIMMS NDVI data from 1981 to 2006 together with precipitation, soil moisture and winter wheat yield data of the same period, the characteristics of winter wheat NDVI and the relationship with precipitation, soil moisture and growth period in these 25 years were analyzed. Furthermore, a new index WWDI (Winter Wheat Drought Index) is proposed, which can objectively and quantitatively evaluate the winter wheat drought situation during the whole growth period. This index considers the slow development of drought and the gradual accumulation of impacts on crops, and implies the robustness of crop growth. The accuracy of WWDI was tested use meteorological data, winter wheat yield and historical Yearbook data. The results showed that:(1) The WWDI can monitor the drought degree of winter wheat during whole growth period. 1995, 2000 and 1992 were the worst drought years that winter wheat suffered in the study area, and the drought degree of winter wheat was corresponding with its meteorological conditions and actual agricultural production. (2) The WWDI has a very significant correlation with winter wheat yield (p < 0.001) and WWDI can be used as an index to evaluate quantitatively the drought status of winter wheat during the whole growth period.

Cite this article

GUO Ni , LU Yaling , HAN Lanying , ZHANG Moucao . Evaluation of Drought Condition in the Whole Growth Period of Winter Wheat in Rain-Fed Agricultural Area by Using Long Sequence NDVI Data[J]. Plateau Meteorology, 2019 , 38(6) : 1300 -1308 . DOI: 10.7522/j.issn.1000-0534.2019.00059

References

[1]Kogan F, Sullivan, 1993. Development of global drought watch system using NOAA/AVHRR data[J]. Advances in Space Research, 13:219-222.
[2]Mannava V K S, Robert S, Mohamed B, 2014. High level meeting on national drought policy:Summary and major outcomes[J]. Weather and Climate Extremes, 3:126-132.
[3]Seiler R A, Kogan F, Wei G, 2000. Monitoring weather impact and crop yield from NOAA AVHRR data in Argentina[J]. Advances in Space Research, 26(7):1177-1185.
[4]Tucker C J, Justice C O, Prince S D, 1986. Monitoring the grasslands of the Sahel 1984-1985[J]. International Journal of Remote Sensing, 7:1571-1581.
[5]陈乾, 1994.用植被指数监测干旱并估计冬麦产量[J].遥感技术与应用, 9(3):12-18.
[6]陈维英, 肖乾广, 盛永伟, 1994.距平指数在1992年特大大旱监测中的应用[J].环境遥感, 9(2):106-112.
[7]邓振镛, 张强, 王强, 等, 2011.黄土高原旱塬区土壤贮水量对冬小麦产量的影响[J].生态学报, 31(18):5281-5290.
[8]郭铌, 2003.植被指数及其进展[J], 干旱气象, 21(4):71-75.
[9]郭铌, 李栋梁, 蔡晓军, 等, 1997.1995年中国西北东部特大干旱的气候诊断与卫星监测[J].干旱区地理, 20(3):69-74.
[10]郭铌, 王小平, 2015.遥感干旱应用技术进展及面临的技术问题与发展机遇[J].干旱气象, 33(1):1-18.
[11]管晓丹, 郭铌, 黄建平, 等, 2008.植被状态指数监测西北干旱的适用性分析[J].高原气象, 27(5):1046-1053.
[12]黄珂, 刘忠, 杨丽芳, 2014.基于多年MODIS-NDVI的黄淮海农区冬小麦生产力评价[J].农业工程学报, 30(2):153-161. DOI:10.3969/j.issn.1002-6819.2014.02.020.
[13]黄友昕, 刘修国, 沈永林, 等, 2015.农业干旱遥感监测指标及其适应性评价方法研究进展[J].农业工程学报, 31(16):186-195. DOI:10.11975/j.issn.1002-6819.2015.16.025.
[14]刘庚山, 安顺青, 吕厚全, 等, 2000.华北地区不同底墒对冬小麦生长发育及产量影响的研究[J].应用气象学报, 11(增刊):119-127.
[15]马艳敏, 郭春明, 李建平, 等, 2019.卫星遥感技术在吉林旱涝灾害监测与评估中的应用[J].干旱气象, 37(1):159-165. DOI:10.1175/j.issn.1006-7639(2019)-01-0159.
[16]钱正安, 吴统文, 宋敏红, 等, 2001.干旱灾害和我国西北干旱气候的研究进展及问题[J].地球科学进展, 16(1):28-38.
[17]孙灏, 陈云浩, 孙洪泉, 2012.典型农业干旱遥感监测指数的比较及分类体系[J].农业工程学报, 28(14):147-154.
[18]孙爽, 杨晓光, 李克南, 等, 2013.中国冬小麦需水量时空特征分析[J].农业工程学报, 29(15):72-82. DOI:10.3969/j.issn.1002-6819.2013.15.010.
[19]沙莎, 郭铌, 李耀辉, 等, 2014.我国温度植被旱情指数TVDI的应用现状及问题简述[J].干旱气象, 32(1):128-134.
[20]王春林, 司建华, 赵春彦, 等, 2019.河西走廊近57年来干旱灾害特征时空演化分析[J].高原气象, 38(1):196-205. DOI:10.7522/j.issn.1000-0534.2018.00081.
[21]王丹云, 吕世华, 韩博, 等, 2017.近30年黄土高原春季降水特征与春旱变化的关系[J].高原气象, 36(2):395-406. DOI:10.7522/j.issn.1000-0534.2018.00033.
[22]王磊, 王贺, 卢艳丽, 等, 2013. NDVI在农作物监测中的研究与应用[J].中国农业资源与区划, 34(4):43-50.
[23]王劲松, 李耀辉, 王润元, 等, 2012.我国气象干旱研究进展评述[J].干旱气象, 30(4):497-508.
[24]王劲松, 李忆平, 任余龙, 等, 2013.多种干旱监测指标在黄河流域应用的比较[J].自然资源学报, 28(8):1337-1349.
[25]温克刚, 董安祥, 2005.中国气象灾害大典·甘肃卷[M].北京:气象出版社, 102-119; 380-382.
[26]温克刚, 丁一汇, 2008.中国气象灾害大典·综合卷[M].北京:气象出版社, 159-229.
[27]严建武, 陈报章, 房世蜂, 等, 2012.植被指数对旱灾的响应研究——以中国西南地区2009年-2010年特大干旱为例[J].遥感学报, 16(4):720-737.
[28]张立杰, 李健, 2018.基于SPEI和SPI指数的西江流域干旱多时间尺度变化特征[J].高原气象, 37(2):560-567. DOI:10.7522/j.issn.1000-0534.2018.00013.
[29]张强, 张良, 崔显成, 等, 2011.干旱监测与评价技术的发展及其科学挑战[J].地球科学进展, 26(7):763-778.
[30]张旭东, 柯晓新, 杨兴国, 等, 1999.甘肃河东小麦需水规律及其分布特征[J].干旱地区农业研究, 17(1):39-44.
[31]郑大玮, 2010.论科学抗旱——以2009年的抗旱保麦为例[J], 灾害学, 25(1):7-12.
Outlines

/