To explore the predictability of the initial value of the Lorenz system constructed under different external forcings by adjusting the parameter value r that characterizes the external forcing in the Lorenz model, and using the explicit fourth-order Runge-Kutta method.It is concluded that the predictability of the initial value decreases and the error growth increases, so the forecast period is shortened, the forecast effect is worse, and the system is more sensitive to the initial value with the increase of external forcing.The correlation coefficient between the initial value and its superimposed small deviation has three sudden decrease with the increase of external forcing.In the picture of simulated Lorenz system motion trajectory, the strange attractor of the Lorenz system changes from one to two, and the surface around the strange attractor also evolves from one to two, and Chaos phenomenon appears.The variance of the X, Y, and Z values; the number of steps in which the X value and the Y value exceed one standard deviation show an upward trend with the increase of external forcing.The increase in external forcing also reduces the number of integration steps of differentiation and the first reversal used in the Lorenz system, and the parallel time of the two sets of data is shorter and shorter.By counting the number of integration steps in the error range in 5%、 10%、 20% of X, Y, and Z values, it is found that the error growth of the system increases with the increase of external forcing.It is no longer within a reasonable range, so the predictability of the initial value is reduced and the forecast period is greatly shortened.
Yiwei LI
,
Guangzhou FAN
,
Xin LAI
. Study on the Influence of External Forcing Weakness on the Predictability of Initial Value in Lorenz Model[J]. Plateau Meteorology, 2020
, 39(1)
: 153
-161
.
DOI: 10.7522/j.issn.1000-0534.2019.00061
[1]Lorenz E N, 1963.Section of planetary sciences: The predictability of hydrodynamic flow[J].Transactions of the New York Academy of Sciences, 1963, 25(4 Series II): 409-432.
[2]Lorenz E N, 1965.A study of the predictability of a 28-variable atmospheric model[J].Tellus, 17(3): 321-333.
[3]Lorenz E N, 1969.Atmospheric predictability as revealed by naturally occurring analogues[J].Journal of the Atmospheric Sciences, 26(1969): 636-646.
[4]Lorenz E N, 1982.Atmospheric predictability experiments with a large numerical model[J].Tellus, 34(6): 505-513.
[5]Lorenz E N, 1995.Predictability: A problem partly solved, vol.I[C]//Proceedings of Seminar at ECMWF.
[6]Lorenz E N, 2004.Deterministic nonperiodic flow[J].Journal of Atmospheric Sciences, 20(2): 130-141.
[7]Leith C E, 1973.The standard error of time-average estimates of climatic means[J].Journal of Applied Meteorology, 12(6): 1066-1069.
[8]Lyapunov A M, 1892.The general problem of stability of motions[D].Moscow: Fizmatgiz(in Russian).
[9]Ruelle D, Takens F, 1971.On the nature of turbulence[J].Communications in Mathematical Physics, 20(3): 167-192.
[10]丑纪范, 1986.长期数值天气预报[M].北京: 气象出版社.
[11]丑纪范, 1983.初始场作用的衰减与算子的特性[J].气象学报, 41: 385-392.
[12]丑纪范, 1986.为什么要动力—统计相结合?——兼论如何结合[J].高原气象, 5(4): 367–372.
[13]丑纪范, 郑志海, 孙树鹏, 2010.10~30d延伸期数值天气预报的策略思考——直面混沌[J].气象科学, 30(5): 569-573.
[14]丁瑞强, 2007.非线性误差增长理论与可预报性研究[D].北京: 中国科学院大气物理研究所.
[15]丁瑞强, 李建平, 2007.误差非线性的增长理论及可预报性研究[J].大气科学, 31(4): 571-576.
[16]丁瑞强, 李建平, 2009.非线性误差增长理论在大气可预报性中的应用[J].气象学报, 67(2): 241-249.
[17]范广洲, 李洪权, 2004.外源强迫和初始值在短期气候预测中的作用[J].高原气象, 23(suppl1): 77-79.
[18]郜吉东, 丑纪范, 1995.数值模式初值的敏感性程度对四维同化的影响[J].气象学报, 53(4): 471-479.
[19]黎爱兵, 张立凤, 李新东, 等, 2017.基于非线性误差信息熵的系统可预报分量分析[J].中国科学(地球科学), 47(2): 245-251.DOI: 10.1360/N072016-00127.
[20]黎爱兵, 张立凤, 项杰, 2012.外强迫对Lorenz系统初值可预报性的影响[J].物理学报, 61(11): 119202.
[21]李崇银, 1995.气候动力学引论[M].北京: 气象出版社.
[22]李崇银, 1996.气候变化及可预报性(CLIVAR)──气候研究的国际新计划[J].气候与环境研究, 1(1): 87-96.
[23]李建平, 丑纪范, 2003.非线性大气动力学的进展[J].大气科学, 27(4): 653-673.
[24]栾澜, 孟宪红, 吕世华, 等, 2018.青藏高原土壤湿度触发午后对流降水模拟试验研究[J].高原气象, 37(4): 873-885.DOI: 10.7522/j.issn.1000-0534.2018.00008.
[25]刘啸然, 李茂善, 胡文斌, 2019.藏北高原那曲地区不同下垫面地表粗糙度的变化特征研究[J].高原气象, 38(2): 428-438.DOI: 10.7522/j.issn.1000-0534.2018.00083.
[26]穆穆, 段晚锁, 2005.条件非线性最优扰动及其在天气和气候可预报性研究中的应用[J].科学通报, 50(24): 2695-2701.
[27]穆穆, 李建平, 丑纪范, 等, 2002.气候系统可预报性理论研究[J].气候与环境研究, 7(2): 227-235.
[28]沈剑华, 2004.数值计算基础(第二版)[M].上海: 同济大学出版社.
[29]王启光, 封国林, 郑志海, 等, 2012.基于Lorenz系统提取数值模式可预报分量的初步试验[J].大气科学, 36(3): 539-550.
[30]曾庆存, 1979.我国大气动力学和数值天气预报研究工作的进展[J].大气科学, 3(3): 256-269.
[31]曾庆存, 2002.气候与环境预测和调控中的数学问题[J].气候与环境研究, 7(1): 1-6.