[1]Aghakouchak A, Nasrollahi N, Habib E, 2009. Accounting for uncertainties of the TRMM satellite estimates[J]. Remote Sensing, 1(3): 606-619. DOI: 10.3390/rs1030606.
[2]Beyer M, Wallner M, Bahlmann L, al et, 2016. Rainfall characteristics and their implications for rain?fed agriculture: a case study in the upper Zambezi River Basin[J]. Hydrological Sciences Journal, 61(2): 1-53.
[3]Cai Y C, Jin C J, Wang A Z, al et, 2015. Spatio?temporal analysis of the accuracy of tropical multi?satellite precipitation analysis 3B42 precipitation data in mid? high latitudes of China[J]. PLoS One, 10(4): e0120026. DOI: 10.1371/journal.pone.0120026.
[4]Darand M, Amanollahi J, Zandkarimi S, 2017. Evaluation of the performance of TRMM Multi?satellite Precipitation Analysis (TMPA) estimation over Iran[J]. Atmospheric Research, 190: 121-127.
[5]Deblauwe V, Droissart V, Bose R, al et, 2016. Remotely sensed temperature and precipitation data improve species distribution modelling in the tropics[J]. Global Ecology and Biogeography, 25(4): 443-454. DOI: 10.1111/geb.12426.
[6]Fensterseifer C, Allasia D G, Paz A R, 2016. Assessment of the TRMM 3B42 precipitation product in southern Brazil[J]. Journal of the American Water Resources Association, 52(2): 367-375.
[7]Hrachowitz M, Weiler M, 2011. Uncertainty of precipitation estimates caused by sparse gauging networks in a small, mountainous watershed [J]. Journal of Hydrologic Engineering, 16(5): 460-471.
[8]Hu Z Y, Zhou Q M, Chen X, al et, 2017.Variations and changes of annual precipitation in central Asia over the last century[J]. International Journal of Climatology, 37: 157-170.
[9]Hu Q F, Yang D W, Wang Y T, al et, 2013.Accuracy and spatiotemporal variation of high resolution satellite rainfall estimate over the Ganjiang River basin[J]. Science China: Technological Sciences, 56(4): 853-865. DOI: 10.1007/s11431-013-5176-7.
[10]Huffman G J, Bolvin D T, Nelkin E J, al et, 2007.The TRMM multi? satellite precipitation analysis (TMPA): Quasi?global, multi? year, combined?sensor precipitation estimates at fine scales[J]. Journal of Hydrometeorology, 8: 38-55.
[11]Islam N, Uyeda H, 2005. Comparison of TRMM3B42products with surface rainfall over Bangladesh[C]//Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS'05. IEEE, 6: 4112-4115.
[12]Jiang S H, Ren L L, Hong Y, al et, 2012.Comprehensive evaluation of multi?satellite precipitation products with a dense rain gauge network and optimally merging their simulated hydrological flows using the Bayesian model averaging method[J]. Journal of Hydrology, 452: 213-225.
[13]Kummerow C, Barnes W, Kozu T, al et, 1998. The tropical rainfall measuring mission (TRMM) sensor package[J]. Journal of Atmospheric and Oceanic Technology, 15(3): 809-817.
[14]Li L, Hong Y, Wang J H, al et, 2009. Evaluation of the real?time TRMM?based multi?satellite precipitation analysis for an operational flood prediction system in Nzoia Basin, Lake Victoria, Africa[J]. Natural Hazards, 50(1): 109-123. DOI: 10.1007/s11069-008-9324-5.
[15]Li X H, Zhang Q, Xu C Y, 2012. Suitability of the TRMM satellite rainfalls in driving a distributed hydrological model for water balance computations in Xinjiang catchment, Poyang Lake basin[J]. Journal of Hydrology, 426 (7): 28-38.
[16]Liu J Z, Zhu A X, Duan Z, 2012. Evaluation of TRMM 3B42 Precipitation product using rain gauge data in Meichuan Watershed, Poyang Lake Basin, China [J]. Journal of Resources and Ecology, 3(4): 359-366. DOI: 10.584/j.issn.1674-764x.2012.04.009.
[17]Liu Z, 2015.Comparison of versions 6 and 7 3?hourly TRMM multi?satellite precipitation analysis (TMPA) research products[J]. Atmospheric Research, 163: 91-101.
[18]Pombo S, Oliveira R P D, 2015. Evaluation of extreme precipitation estimates from TRMM in Angola[J]. Journal of Hydrology, 523: 663-679.
[19]Prakash S, Mitra A K, Aghakouchak A, al et, 2015. Error characterization of TRMM multi?satellite precipitation analysis (TMPA?3B42) products over India for different seasons[J]. Journal of Hydrology, 529(3): 1302-1312.
[20]Sahoo A K, Sheffield J, Pan M, al et, 2015.Evaluation of the tropical rainfall measuring mission multi?satellite precipitation analysis (TMPA) for assessment of large?scale meteorological drought[J]. Remote Sensing of Environment, 159: 181-193.
[21]Scheel M L M, Rohrer M, Huggel C H, al et, 2011. Evaluation of TRMM multi?satellite precipitation analysis (TMPA) performance in the Central Andes region and its dependency on spatial and temporal resolution[J]. Hydrology and Earth System Sciences, 15(8): 2649-2663. DOI: 10.5194/hess-15-2649-2011.
[22]Simons G, Bastiaanssen W, Ngo L, al et, 2016. Integrating global satellite?derived data products as a pre?analysis for hydrological modelling studies: A case study for the Red River Basin[J]. Remote Sensing, 8(4): 279. DOI: 10.3390/rs8040279.
[23]Tekeli A E, Fouli H, 2016. Evaluation of TRMM satellite?based precipitation indexes for flood forecasting over Riyadh City, Saudi Arabia[J]. Journal of Hydrology, 541: 471-479.
[24]Tong K, Su F, Yang D, al et, 2014. Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the Tibetan Plateau[J]. Journal of Hydrology, 519: 423-437.
[25]Varikoden H, Samah A A, Babu C A, 2010. Spatial and temporal characteristics of rain intensity in the peninsular Malaysia using TRMM rain rate[J]. Journal of Hydrology, 387(3/4): 312-319.
[26]Wang X J, Pang G J, Yang M X, al et, 2018. Precipitation changes in the Qilian Mountains associated with the shifts of regional atmospheric water vapour during 1960-2014[J]. International Journal of Climatology, 38(12): 4355-4368.
[27]Yong B, Chen B, Gourley J J, al et, 2014. Intercomparison of the Version?6 and Version?7 TMPA precipitation products over high and low latitudes basins with independent gauge networks: Is the newer version better in both real?time and post?real?time analysis for water resources and hydrologic extremes?[J]. Journal of Hydrology, 508: 77-87.
[28]蔡研聪, 金昌杰, 王安志, 等, 2014. 中高纬度地区TRMM卫星降雨数据的精度评价[J]. 应用生态学报, 25(11): 3296-3306. DOI: 10.13287/j.1001-9332.2014.0190.
[29]陈桂英, 赵振国, 1998. 短期气候预测评估方法和业务初估[J]. 应用气象学报, 9(2): 178-185.
[30]陈亚宁, 李稚, 范煜婷, 等, 2014. 西北干旱区气候变化对水文水资源影响研究进展[J]. 地理学报, 69(9): 1295-1304. DOI: 10.11821/dlxb201409005.
[31]傅云飞, 刘奇, 自勇, 等, 2008. 基于TRMM卫星探测的夏季青藏高原降水和潜热分析[J].高原山地气象研究, 28 (1): 8-18.
[32]江善虎, 任立良, 雍斌, 等, 2014. TRMM卫星降水数据在洣水流域径流模拟中的应用[J]. 水科学进展, 25(5): 641-649. DOI: 10.14042/j.cnki.32.1309.2014.05.006.
[33]李常斌, 杨林山, 杨文瑾, 等, 2014. 洮河流域土地利用/土地覆被变化及其驱动机制研究[J]. 地理科学, 34(7): 848-855. DOI: 10.13249/j.cnki.sgs.2014.07.016.
[34]李芳洲, 李江南, 2017. 基于TRMM卫星探测的南海及周边地区春夏季降水日变化特征[J]. 热带地理, 37(5): 728-737. DOI: 10.13284/j.cnki.rddl.002985.
[35]李剑锋, 佘文婧, 江善虎, 等, 2014. TRMM卫星降水数据在老哈河流域的精度评估[J].水资源与水工程学报, 25 (5): 89-97. DOI: 10.11705/j.issn.1672-643X.2014.05.020.
[36]李蒙, 秦天玲, 刘少华, 等, 2017. 怒江上游TRMM 3B42 V7 降水产品资料时空验证及降水特征分析[J]. 高原气象, 36(4): 950-959. DOI: 10.7522 /j. issn.1000-0534.2016.00071.
[37]李麒崙, 张万昌, 易路, 等, 2018. GPM与TRMM降水数据在中国大陆的精度评估与对比[J]. 水科学进展, 29(3): 303-313. DOI: 10.14042/j.cnki.32.1309.2018.03.001.
[38]李琼, 杨梅学, 万国宁, 等, 2016. TRMM3B43降水数据在黄河源区的适用性评价[J]. 冰川冻土, 38(3): 620-633. DOI: 10.7522/j.issn.1000-0240.2016.0069.
[39]林彤, 郑有飞, 李特, 等, 2018. 基于卫星资料的中国西北地区冰云特征分析[J]. 高原气象, 37(4): 1051-1060. DOI: 10.7522/j.issn.1000-0534.2017.00088.
[40]刘俊峰, 陈仁升, 韩春坛, 等, 2010.多卫星遥感降水数据精度评价[J].水科学进展, 21(3): 343-348. DOI: 10.14042/j.cnki.32. 1309.2010.03.002.
[41]刘少华, 严登华, 王浩, 等, 2016. 中国大陆流域分区TRMM降水质量评价[J]. 水科学进展, 27(5): 639-651. DOI: 10. 14042 /j. cnki.32.1309.2016.05.001.
[42]吕洋, 杨胜天, 蔡明勇, 等, 2013.TRMM卫星降水数据在雅鲁藏布江流域的适用性分析[J]. 自然资源学报, 28(8): 1414-1425. DOI: 10.11849/zrzyxb.2013.08.014.
[43]骆三, 苗峻峰, 牛涛, 等, 2011.TRMM 测雨产品3B42与台站资料在中国区域的对比分析[J]. 气象, 37(9): 1081-1090.
[44]毛江玉, 吴国雄, 2012. 基于TRMM卫星资料揭示的亚洲季风区夏季降雨日变化[J]. 中国科学(地球科学), 42 (4): 564-576.
[45]齐文文, 张百平, 庞宇, 等, 2013. 基于TRMM数据的青藏高原降水的空间和季节分布特征[J]. 地理科学, 33(8): 999-1005.
[46]钱正安, 蔡英, 宋敏红, 等, 2018. 中国西北旱区暴雨水汽输送研究进展[J]. 高原气象, 37(3): 577-590. DOI: 10.7522/j.issn. 1000-0534.2018.00032.
[47]唐国强, 李哲, 薛显武, 等, 2015. 赣江流域TRMM遥感降水对地面站点观测的可替代性[J]. 水科学进展, 26(3): 340-346. DOI: 10.14042 /j. cnki.32.1309.2015.03.005.
[48]王佳伶, 陈华, 许崇育, 等, 2016. TRMM卫星降雨数据的精度及径流模拟评估[J]. 水资源研究, 5(5): 434-445.
[49]王莺, 张强, 王劲松, 等, 2017. 基于分布式水文模型(SWAT)的土地利用和气候变化对洮河流域水文影响特征[J]. 中国沙漠, 37(1): 175-185. DOI: 10.7522/j.issn.1000-694X.2015.00189.
[50]王兆礼, 钟睿达, 赖成光, 等, 2017. TRMM卫星降水反演数据在珠江流域的适用性研究——以东江和北江为例[J].水科学进展, 28(2): 174-182. DOI: 10.14042 /j. cnki. 32. 1309. 2017. 02. 002.
[51]谢红霞, 刘旭星, 隋兵, 等, 2017. TRMM降雨数据在湖南省长株潭地区的适用性[J]. 水土保持通报, 37(3): 295-301. DOI: 10.13961/j.cnki.stbctb.2017.03.051.
[52]薛童, 管兆勇, 徐建军, 等, 2017. ATMS和CrIS卫星资料同化对青藏高原天气预报的影响[J]. 高原气象, 36( 4) : 912-929. DOI: 10.7522 /j.issn.1000-0534.2016.00087.
[53]张济世, 康尔泗, 蓝永超, 等, 2003. 50a来洮河流域降水径流变化趋势分析[J]. 冰川冻土, 25(1): 77-82.
[54]张蒙, 黄安宁, 计晓龙, 等, 2016. 卫星反演降水资料在青藏高原地区的适用性分析[J]. 高原气象, 35(1): 34-42. DOI: 10.7522 /j.issn.1000-0534.2014.00152.
[55]张晓晓, 张钰, 徐浩杰, 2013. 1960-2010年洮河流域径流变化趋势及影响因素[J]. 兰州大学学报(自然科学版), 49(1): 38-42.
[56]赵庆云, 傅朝, 刘新伟, 等, 2017. 西北东部暖区大暴雨中尺度系统演变特征[J]. 高原气象, 36(3): 697-704. DOI: 10.7522/j.issn.1000-0534.2016.00140.