Comparisons of Cloud Top Parameter of FY‑4A Satellite and its Typhoon Application Research

  • Linli CUI ,
  • Wei GUO ,
  • Weiqiang GE ,
  • Yafei YAN ,
  • Shuang LUO
Expand
  • <sup>1.</sup>Shanghai Ecological Forecasting and Remote Sensing Center, Shanghai 200030, China;<sup>2.</sup>Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China

Received date: 2019-05-06

  Online published: 2020-02-28

Abstract

Clouds reflect the dynamic of atmosphere and the thermal processing. Parameters such as cloud top temperature and cloud top height are significant for diagnosing the intensity of weather system and convection development, and they are important roles in weather analysis, numerical forecast and aviation meteorology. Fengyun?4 (FY?4A) satellite is the second generation of stationary meteorological satellite independently developed by China. Compared with the Fengyun?2(FY?2) meteorological satellite, FY?4A satellite's performance has been significantly improved. For example, the observation channels has been expanded from 5 to 14, the observation time of the whole disk image has been shortened from 0.5 h to 15 min, and the maximum spatial resolution has been improved from 1.25 km to 0.5 km. Therefore, FY?4A satellite's products have been increased 160 times than FY?2 satellite's. As the first satellite of scientific experiments, FY?4A is mainly used to validate new technologies and develop new applications. In order to evaluated and analyzed the accuracy of FY?4A satellite's products during the period of typhoons processes near the coastal area of Southeast China in 2018, three main products have been compared with the polar orbiting meteorology satellite of American EOS/MODIS's products and the second generation geostationary meteorological satellite of Japanese Himawari?8's products, including cloud top height (CTH), cloud top temperature (CTT) and cloud top pressure (CTP). The results indicated that the cloud top parameters obtained from FY?4A satellite had a high linear correlation with MODIS and Himawari?8 products as a whole. FY?4A was highly linearly correlated with MODIS, and the correlation coefficient was above 0.98, and the overall mean bias was the smallest. Particularly, in the typhoon center and eye wall area with deep and dense cloud, the mean bias of inter?satellite results was obviously reduced. For example, FY?4 A differed from himawari ?8 by 0.78 oC in CTT, 30 m in CTH and 0.2 hPa in CTP at the center of typhoon, and the mean bias between FY?4A and MODIS or the mean bias between Himawari?8 and MODIS was also small. Therefore, the quality of FY?4A cloud top parameters is reliable; the precision of FY?4A satellite's cloud products is comparable to those of MODIS and Himawari?8 satellites, which is suitable for analyzing typhoon's deep cloud structure. The reason for the bias was initially analyzed as the influence of the existence of transparent thin cirrus clouds and small?scale clouds, which were related to the spatial resolution of different instruments, cloud detection ability of different instruments and cloud detection algorithm and so on.

Cite this article

Linli CUI , Wei GUO , Weiqiang GE , Yafei YAN , Shuang LUO . Comparisons of Cloud Top Parameter of FY‑4A Satellite and its Typhoon Application Research[J]. Plateau Meteorology, 2020 , 39(1) : 196 -203 . DOI: 10.7522/j.issn.1000-0534.2019.00065

References

[1]Bedka S T, Feltz W F, Schreiner A J, al et, 2007. Satellite derived cloud top pressure product validation using aircraft-based cloud physics lidar data from the ATReC field campaign[J]. International Journal of Remote Sensing, 28: 2221-2239.
[2]Chahine M T, 1974. Remote sounding of cloudy atmospheres. I. The single cloud layer[J]. Journal of the Atmospheric Sciences, 31(1): 233-243.
[3]Dong X Q, Minnis P, Xi B K, al et, 2008. Comparison of CERES?MODIS stratus cloud properties with ground?based measurements at the DOE ARM Southern Great Plains site[J]. Journal of Geophysical Research: Atmospheres, 113: D03204. DOI: 10. 1029/2007JD008438.
[4]Frey R A, Baum B A, Menzel W P, al et, 1999. A comparison of cloud top heights computed from airborne lidar and MAS radiance data using CO<sub>2</sub> slicing[J]. Journal of Geophysical Research: Atmospheres, 104(D20):24547-24555.
[5]Goloub P, Herman M, Chepfer H, al et, 2000. Cloud thermo?dynamical phase classification from the POLDER spaceborne instrument[J]. Journal of Geophysical Research: Atmospheres, 105(D11):14747-14759.
[6]Hamada A, Nishi N, Iwasaki S, al et, 2008. Cloud type and top height estimation for tropical upper?tropospheric clouds using GMS?5 split?window measurements combined with cloud radar measurements[J]. Scientific Online Letters on the Atmosphere, 4(1): 57-60.
[7]Hasler A F, Mack R, Negri A, 1983. Stereoscopic observations from meteorological satellites[J]. Advances in Space Research, 2(6): 105-113.
[8]Hawkinson J A, Feltz W, Ackerman S A, 2005. A comparison of GOES Sounder?and cloud lidar?and radar?retrieved cloud?top heights[J]. Journal of Applied Meteorology, 44(8): 1234-1242.
[9]Kim S W, Chung E S, Yoon S C, al et, 2011. Intercomparisons of cloud?top and cloud?base heights from ground?based Lidar, CloudSat and CALIPSO measurements[J]. International Journal of Remote Sensing, 32(4): 1179-1197.
[10]Lavanant L, Fourrié N, Gambacorta A, al et, 2011. Comparison of cloud products within IASI footprints for the assimilation of cloudy radiances[J].Quarterly Journal of the Royal Meteorological Society, 137(661): 1988-2003.
[11]Marchand R, Ackerman T, Smyth M, al et, 2010. A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS[J]. Journal of Geophysical Research: Atmospheres, 115(D16):D16206. DOI: 10.1029/2009JD013422.
[12]Min M, Wu C Q, Li C, al et, 2017. Developing the science product algorithm testbed for Chinese next generation geostationary meteorological satellites: Fengyun?4 series[J]. Journal of Meteorological Research, 31(4): 708-719.
[13]Naud C, Muller J P, Clothiaux E E, 2006. Assessment of multispectral ATSR2 stereo cloud?top height retrievals[J]. Remote Sensing of Environment, 104(3): 337-345.
[14]Platnick S, King M D, Ackerman S A, al et, 2003. The MODIS cloud products: Algorithms and examples from Terra[J]. IEEE Transactions on Geoscience and Remote Sensing, 41(2): 459-473.
[15]Schmit T J, Gunshor M M, Menzel W P, al et, 2005. Introducing the next?generation advanced baseline imager on GOES?R[J]. Bulletin of the American Meteorological Society, 86: 1079-1096.
[16]Schreiner A J, Schmit T J, Menzel W P, 2001. Observations and trends of clouds based on GOES sounder data[J]. Journal of Geophysical Research: Atmospheres,106(D17): 20349-20364.
[17]Smith Jr W L, Minnis P, Finney H, al et, 2008.An evaluation of operational GOES?derived single?layer cloud top heights with ARSCL data over the ARM Southern Great Plains Site[J]. Geophysical Research Letters, 35(13): L13820. DOI: 10.1029/ 2008GL034275.
[18]Wang Z, Wang Z H, Cao X Z, al et, 2018. Comparison of cloud top heights derived from FY?2 meteorological satellites with heights derived from ground?based millimeter wavelength cloud radar[J]. Atmospheric Research, 199: 113-127.
[19]Yang J, Zhang P, Lu N M, al et, 2012. Improvements on global meteorological observations from the current Fengyun 3 satellites and beyond[J]. International Journal of Digital Earth, 5(3): 251-265.
[20]Yang J, Zhang Z Q, Wei C Y, al et, 2016. Introducing the new generation of Chinese geostationary weather satellites, FengYun?4 (FY?4)[J]. Bulletin of the American Meteorological Society, 98(8): 1637-1658. DOI: 10.1175/BAMS-D-16-0065.1.
[21]Yu Y, Tarpley D, Privette J L, al et, 2009. Developing algorithm for operational GOES?R land surface temperature product[J]. IEEE Transactions on Geoscience and Remote Sensing, 47(3): 936-951.
[22]曹芸, 何永健, 邱新法, 等, 2012. 基于地面观测资料的MODIS云量产品订正[J]. 遥感学报, 16(2): 325-342.
[23]陈渭民, 2003. 卫星气象学[M]. 北京: 气象出版社, 112-133, 419.
[24]陈英英, 唐仁茂, 李德俊, 等, 2013.利用雷达和卫星资料对一次强对流天气过程的云结构特征分析[J]. 高原气象, 32(4): 1148-1156. DOI: 10.7522/j.issn.1000-0534.2012.00108.
[25]董瑶海, 2016.风云四号气象卫星及其应用展望[J]. 上海航天, 33(2): 1-8.
[26]樊宏杰, 黄亦鹏, 李万彪, 2017. 基于卫星红外遥感的云顶高度反演算法综述[J]. 北京大学学报(自然科学版), 53(4): 783-792.
[27]范思睿, 王维佳, 2018.利用FY?4A卫星反演产品对飞机增雨作业的分析[J]. 高原山地气象研究, 38(4): 60-66. DOI: 10.3969/j.issn.1674-2184.2018.04.010.
[28]李典, 白爱娟, 黄盛军, 2012. 利用TRMM卫星资料对青藏高原地区强对流天气特征分析[J]. 高原气象, 31(2): 304-311.
[29]林琳, 黄思训, 杜华栋, 2006. MODIS数据的云顶高度反演[J]. 地球信息科学, 8(2): 106-109.
[30]刘健, 李云, 2011. 风云二号静止气象卫星的云相态识别算法[J]. 红外与毫米波学报, 30(4): 322-327.
[31]刘江涛, 徐宗学, 赵焕, 等, 2019. 不同降水卫星数据反演降水量精度评价——以雅鲁藏布江流域为例[J]. 高原气象, 38(2): 386-396. DOI: 10.7522/j.issn.1000-0534.2018.00092.
[32]刘忠, 凌峰, 张秋文, 2005. MODIS遥感数据产品处理流程与大气数据获取[J]. 遥感信息(2: 52-57.
[33]陆风, 张晓虎, 陈博洋, 等, 2017. 风云四号气象卫星成像观测模式及其应用前景[J]. 海洋气象学报, 37(2): 1-12.
[34]吕达仁, 王普才, 邱金桓, 等, 2003. 大气遥感与卫星气象学研究的进展与回顾[J]. 大气科学, 27(4): 552-566.
[35]史兰红, 崔林丽, 赵兵科, 等, 2015. 台风眼壁及周围螺旋云带云属性垂直分布研究[J]. 热带气象学报, 31(1): 51-62.
[36]王胜杰, 何文英, 陈洪滨, 等, 2010. 利用CloudSat资料分析青藏高原、 高原南坡及南亚季风区云高度的统计特征量[J]. 高原气象, 29(1): 1-9.
[37]王宏斌, 张志薇, 刘端阳, 等, 2018. 基于葵花8号新一代静止气象卫星的夜间雾识别[J]. 高原气象, 37(6): 1749-1764. DOI: 10.7522 /j.issn.1000-0537.2018.00037.
[38]吴小丹, 闻建光, 肖青, 等, 2015. 关键陆表参数遥感产品真实性检验方法研究进展[J]. 遥感学报, 19(1): 75-92.
[39]徐小红, 余兴, 朱延年, 等, 2018. 6·23龙卷FY?2G卫星云微物理特征分析[J]. 高原气象, 37(6): 1737-1748. DOI: 10.7522/j.issn.1000-0534.2018.00041.
[40]张鹏, 郭强, 陈博洋, 等, 2016. 我国风云四号气象卫星与日本Himawari?8/9卫星比较分析[J]. 气象科技进展, 6(1): 72-75.
[41]张志清, 陆风, 方翔, 等, 2017. FY?4卫星应用和展望[J]. 上海航天, 34(4): 8-19.
[42]中国气象局, 2011. 气象卫星定量产品质量评价指标和评估报告要求(QX/T 127-2011)[S]. 北京: 气象出版社, 1-6.
[43]周毓荃, 陈英英, 李娟, 等, 2008. 用FY?2C/D卫星等综合观测资料反演云物理特性产品及检验[J]. 气象, 34(12): 27-35.
[44]赵震, 2019. 2016年台风“莫兰蒂”结构特征的多源卫星探测分析[J]. 高原气象, 38(1): 156-164. DOI: 10.7522 /j.issn.1000-0534.2018.00065.
Outlines

/