Analysis on Autumn Aerosol Optical Characteristics at Lanzhou with Sun-photometer

  • Hui LIU ,
  • Ye YU ,
  • Dunsheng XIA ,
  • Suping ZHAO
Expand
  • <sup>1.</sup> Key Laboratory of Land Surface Process & Climate Change in Clod & Arid Regions, the Northwest Institute of Eco?Environment and Resources (NIEER), Chinese Academy of Sciences (CAS), Lanzhou 730000, Gansu, China;<sup>2.</sup> Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu, China

Received date: 2019-03-29

  Online published: 2020-02-28

Abstract

Aerosol optical properties including aerosol optical depth (AOD), Angstrom wavelength index (α), and atmospheric turbidity coefficient (β) were inferred from the ground?based solar photometer observation data in Lanzhou from September to November 2015.The distribution and variation of aerosol optical properties were analyzed.Types and distribution of aerosols were derived based on Angstrom range and graphical method.The results show that the average AOD500 nm in autumn in Lanzhou City is 0.47±0.22.α 440~870 nm was the lowest in October (0.95±0.26) and the highest in September (1.21±0.14).β is the lowest in September (0.15±0.05) and the highest in November (0.28±0.12).The daily variation of AOD500nm ranges from 0.27 to 0.52.During September and October 2015, AOD500 nm mainly distributed between 0.2~0.6.In November, AOD500 nm is concentrated between 0.4~0.8, indicating that the distribution of AOD500 nm in Lanzhou in autumn is concentrated, and loading of aerosols increased from September to November.The wavelength index is mainly distributed between 1.0~1.4, 0.6~0.8, and 1.0~1.4 in September, October and November, respectively, with peaks between 1.2~1.4 and 1.0~1.2.Overall, aerosol in autumn is dominated by fine particle aerosols in Lanzhou.AOD500nm is significantly correlated with β, and both aerosol optical depth and turbidity coefficient can characterize the degree of turbidity.The main types of aerosols in autumn are anthropogenic and mixed aerosols in fine particle mode.The hygroscopic growth of fine particle aerosol is the main reason for the high aerosol optical depth in autumn for Lanzhou City.

Cite this article

Hui LIU , Ye YU , Dunsheng XIA , Suping ZHAO . Analysis on Autumn Aerosol Optical Characteristics at Lanzhou with Sun-photometer[J]. Plateau Meteorology, 2020 , 39(1) : 204 -212 . DOI: 10.7522/j.issn.1000-0534.2019.00057

References

[1]?ngstr?m A , 1929.On the atmospheric transmission of sun radiation and on dust in the air[J].Geografiska Annaler, 11(40): 156-166.
[2]Dubovik O , 2002.Variability of absorption and optical properties of key aerosol types observed in worldwide locations[J].Journal of the Atmospheric Sciences, 59(3): 590-608.
[3]Eck T F , Holben B N , Dubovik O , al et , 2005.Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid?Pacific[J].Journal of Geophysical Research?Atmospheres, 110(D06202): 887-908.
[4]Gobbi G P , Kaufman Y J , Koren I , al et , 2007.Classification of aerosol properties derived from AERONET direct sun data[J].Atmospheric Chemistry & Physics( 2: 8713-8726.
[5]Holben B N , Eck T F , Slutsker I , al et , 1998.AERONET—A federated instrument network and data archive for aerosol characterization[J].Remote Sensing of Environment, 66(1): 1-16.
[6]Holben B N , Tanré D , Smirnov A , al et , 2001.An emerging ground?based aerosol climatology: Aerosol optical depth from AERONET[J].Journal of Geophysical Research Atmospheres, 106(D11):12067-12097.
[7]Pithurai G , Pinker R T , Dubovik O , al et , 2001.Remote sensing of aerosol optical characteristics in sub?Sahel, West Africa[J].Journal of Geophysical Research Atmospheres, 106(D22):28347-28356.
[8]Singh R P , Dey S , Tripathi S N , al et , 2004.Variability of aerosol parameters over Kanpur, northern India[J].Journal of Geophysical Research Atmospheres, 109(D23 D23206.
[9]Smirnov A , Holben B N , Eck T F , al et , 2000.Cloud?screening and quality control algorithms for the aeronet database[J].Remote Sensing of Environment, 73(3), 337-349.
[10]Tanré D , KaufmanY J , Holben B N , al et , 2001.Climatology of dust aerosol size distribution and optical properties derived from remotely sensed data in the solar spectrum[J].Journal of Geophysical Research Atmospheres, 106(D16):18205-18217.
[11]Wang B , Chen J , Jiang H , al et , 2010.The aerosol optical depth retrievals from ground sun?photometer measurements in Yangtze River Delta of China[C]// International Conference on Geoinformatics.IEEE, 1-5.
[12]Zhao H , Che H , Wang Y , al et , 2016.Investigation of the optical properties of aerosols over the coastal region at Dalian, Northeast China[J].Atmosphere, 7(8): 103.
[13]Zhao S P , Yu Y , Qin D H , 2018.From highly polluted inland city of China to “Lanzhou Blue”: The air?pollution characteristics[J].Sciences in Cold and Arid Regions, 10(1): 0012–0026.
[14]董自鹏, 李星敏, 杜川利, 等 , 2013.西安地区气溶胶光学特性研究[J].高原气象, 32(3): 856-864.DOI: 10.7522/j.issn.1000-0534.2012.00079 .
[15]杜川利, 唐晓, 李星敏, 等 , 2014.城市边界层高度变化特征与颗粒物浓度影响分析[J].高原气象, 33(5): 1383-1392.DOI: 10.7522/j.issn.1000-0534.2013.00077 .
[16]高中明, 闭建荣, 黄建平 , 2013.基于AERONET和SKYNET网观测的中国北方地区气溶胶光学特征分析[J].高原气象, 32(5): 1293-1307.DOI: 10.7522/j.issn.1000-0534.2012.00116 .
[17]胡文超, 张文煜, 郭振海, 等 , 2009.甘肃半干旱区城乡气溶胶光学特性的观测与分析[J].兰州大学学报(自然科学版), 45(6): 46-50.
[18]李成 , 2017.南宁市大气气溶胶光学特性与理化特性综合观测研究[D].广西: 广西师范学院, 15-22.
[19]李海龙, 张自力, 李正泉, 等 , 2018.基于CE318数据的杭州市气溶胶光学特征研究[J].科技通报, (6): 46-53.
[20]刘大召, 田礼乔, 杨锦坤, 等 , 2008.南海北部海域气溶胶光学厚度研究[J].热带气象学报, 24(2): 205-208.
[21]刘敬乐, 姚青, 蔡子颖, 等 , 2017.基于太阳光度计的天津城区气溶胶光学特性[J].中国环境科学, 37(11): 4013-4021.
[22]刘玉杰, 牛生杰, 郑有飞 , 2004.用CE?318太阳光度计资料研究银川地区气溶胶光学厚度特性[J].大气科学学报, 27(5): 615-622.
[23]牟福生, 李昂, 谢品华, 等 , 2016.利用CE318太阳光度计资料反演合肥气溶胶光学特性[J].红外与激光工程, 45(2): 160-165.
[24]齐冰, 杜荣光, 于之锋, 等 , 2014.杭州市大气气溶胶光学厚度研究[J].中国环境科学, 34(3): 588-595.
[25]权晓晶, 张镭, 曹贤洁, 等 , 2009.2007年兰州市冬季大气气溶胶光学厚度特性[J].兰州大学学报(自然科学版), 45(3): 39-44.
[26]任团伟, 郭照冰, 刘唯佳, 2015.2009-2011年北京地区大气气溶胶光学特性季节变化规律研究[J].环境化学, 34(12): 2239-2247.
[27]任宜勇, 李霞, 吕鸣, 等 , 2006.CE318太阳光度计观测资料应用前景及其解读[J].气象科技, 34(3): 349-352.
[28]申彦波, 沈志宝, 汪万福 , 2003.2001年春季中国北方大气气溶胶光学厚度与沙尘天气[J].高原气象, 22(2): 185-190.
[29]石广玉, 王标, 张华, 等 , 2008.大气气溶胶的辐射与气候效应[J].大气科学, 32(4): 826-840.
[30]谭浩波, 吴兑, 邓雪娇, 等 , 2009.珠江三角洲气溶胶光学厚度的观测研究[J].环境科学学报, 29(6): 1146-1155.
[31]王静, 牛生杰, 许丹 , 2017.南京气溶胶光学特性地基观测研究[J].气象科学, 37(2): 248-255.
[32]王伟齐, 臧增亮, 宋彬, 等 , 2016.北京地区不同时段平均PM<sub>2.5</sub>浓度与MODIS气溶胶光学厚度相关性分析[J].环境科学学报, 36(8): 2794-2802.
[33]王钊, 彭艳, 车慧正, 等 , 2013.近10年关中盆地MODIS气溶胶的时空变化特征[J].高原气象, 32(1): 234-242.DOI: 10.7522/j.issn.1000-0534.2012.00023 .
[34]吴立新, 吕鑫, 秦凯, 等 , 2016.基于太阳光度计地基观测的徐州气溶胶光学特性变化分析[J].科学通报, 61(20): 2287.
[35]肖钟湧, 江洪, 陈健, 等 , 2010.利用 MODIS 遥感数据反演广州市气溶胶光学厚度[J].中国环境科学, 30(5), 577-584.
[36]延昊, 矫梅燕, 毕宝贵, 等 , 2006.国内外气溶胶观测网络发展进展及相关科学计划[J].气象科学, 26(1): 110.
[37]杨志峰, 张小曳, 车慧正, 等 , 2008.CE318 型太阳光度计标定方法初探[J].应用气象学报, 19(3), 297-306.
[38]张婕, 刘海文, 肖国杰, 等 , 2012.采暖期前后兰州城市气溶胶光学特性变化特征[J].干旱气象, 30(2): 178-181.
[39]张勇, 银燕, 刘藴芳, 等 , 2014.北京秋季大气气溶胶光学厚度与Angstrom指数观测研究[J].中国环境科学, 34(6): 1380-1389.
[40]赵胡笳 , 2014.中国东北城市地区大气气溶胶光学特性及其直接辐射效应研究[D].北京: 中国气象科学研究院.
[41]赵胡笳, 马雁军, 王绪鑫, 等 , 2012.2010年秋季鞍山气溶胶光学特征变化[J].气象与环境学报, 28(4): 55-62.
[42]郑凯端, 陈健, 周杰, 等 , 2018.长三角地区一次严重雾霾事件的多源遥感监测研究[J].国土资源遥感, 30(1): 224-232.
[43]郑卓云, 陈良富, 郑君瑜, 等 , 2011.高分辨率气溶胶光学厚度在珠三角及香港地区区域颗粒物监测中的应用研究[J].环境科学学报, 31(6): 1154-1161.
Outlines

/