Numerical Simulation of Cloud Precipitation and Cloud Microphysical Process in Nagqu Area on August 7, 2014

  • Shucheng YIN ,
  • Maoshan LI ,
  • Xiaoran LIU ,
  • Xingyu SONG ,
  • Zhao Lü ,
  • Lei SHU ,
  • Lingzhi WANG ,
  • Wei FU
Expand
  • School of Atmospheric Sciences/Plateau Atmosphere and Environment Key Laboratory of Sichuan Province/Joint Laboratory of Climate and Environment Change, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China

Received date: 2019-04-11

  Online published: 2020-02-28

Abstract

This paper used the mesoscale model WRF to simulate a convective cloud precipitation process in the Nagqu area of the Qinghai-Tibetan Plateau from August 7 to August 8, 2014.The WRF model can better simulate the precipitation, rainfall center and rainfall level of the convective cloud precipitation process in the Nagqu area.The simulation results show that the phase particles are distributed in different height layers, and the distribution position has no obvious change with time.The change of mass density with time can basically reflect the characteristics of ground precipitation changes.The simulated source of rain, snow and graupel indicates that cloud water contributes the most to precipitation.The process of condensation and collision is the main process of snow and graupel growth.The combination of smelting and cloud water accelerates the movement of cloud water to rainwater.Transform to make precipitation on the ground.It can be seen from the evolution characteristics of cloud microphysical processes over time that the ice phase particle process plays an important role in the process of plateau precipitation.In the whole process, graupel plays an important role in the formation of precipitation cloud water and rain water also play an important role in the formation of graupel.

Cite this article

Shucheng YIN , Maoshan LI , Xiaoran LIU , Xingyu SONG , Zhao Lü , Lei SHU , Lingzhi WANG , Wei FU . Numerical Simulation of Cloud Precipitation and Cloud Microphysical Process in Nagqu Area on August 7, 2014[J]. Plateau Meteorology, 2020 , 39(1) : 48 -57 . DOI: 10.7522/j.issn.1000-0534.2019.00062

References

[1]Chen F, Dudhia J, 2001.Coupling an advanced land surface-hydrology model with the penn state-NCAR MM5 modeling system.Part I: model implementation and sensitivity[J].Monthly Weather Review, 129(4): 569-585.
[2]Dudhia J, Moncrieff M W, 1989.A three-dimensional numerical study of an Oklahoma squall line containing right-flank supercells[J].Journal of the Atmospheric Sciences, 46(21): 3363-3391.
[3]Fu Y, Liu G, Wu G, al et, 2006.Tower mast of precipitation over the central Tibetan Plateau summer[J].Geophysical Research Letters, 33(5): 157-158.DOI: 10.1029/2005GL024713.
[4]Gao W, Chung H S, Fan J, al et, 2016.A study of cloud microphysics and precipitation over the Tibetan Plateau by radar observations and cloud-resolving model simulations[J].Journal of Geophysical Research: Atmospheres, 121(22).DOI: 10.1002/2015JD024196.
[5]Gao W, Liu L, Li J, al et, 2018.The microphysical properties of convective precipitation over the Tibetan Plateau by a subkilometer resolution cloudresolving simulation[J].Journal of Geophysical Research: Atmospheres, 123: 3212-3227.DOI: 10.1002/2017JD027812.
[6]Grell G A, Dévényi D, 2002.A generalized approach to parameterizing convection combining ensemble and data assimilation techniques[J].Geophysical Research Letters, 29(6): 587-590.DOI: 10.1029/2002GL015311.
[7]Hong S Y, Noh Y, Dudhia J, 2006.A new vertical diffusion package with an explicit treatment of entrainment processes[J].Monthly Weather Review, 134: 2318-2341.DOI: 10.1175/MWR3199.1.
[8]Li C, Yanai M, 1996.The onset and interannual variability of the Asian summer monsoon in relation to land–sea thermal contrast[J].Journal of Climate, 9(2): 358-375.DOI: 10.1175/1520-0442(1996)009<0358: toaivo>2.0.co; 2.
[9]Lin Y, Farley R D, Orville H D, 1983, Bluk parameterization of the snow field in a cloud model.[J].Journal of Climate and Applied Meteorology, 22(6): 1065-1092.DOI: 10.1175/1520-0450(1983)022<1065: BPOTSF>2.0.CO; 2.
[10]Maussion F, Scherer D, Finkelnburg R, al et, 2011, WRF simulation of a precipitation event over the Tibetan Plateau, China-an assessment using remote sensing and ground observations[J].Hydrology and Earth System Sciences, 15(6): 1795-1817.DOI: 10.5194/hess-15-1795-2011.
[11]Ren C P, Cui X P, 2014, The cloud-microphysical cause of torrential rainfall amplification associated with Bilis (0604)[J].Science China Earth Sciences, 57(9): 2100-2111.DOI: 10.1007/s11430-014-4884-6.
[12]Stamnes K, 1988, Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media[J].Applied Optics, 27(12): 2502-2509.DOI: 10.1364/AO.27.002502.
[13]Tao S Y, Ding Y H, 1981.Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China[J].Bulletin of the American Meteorological Society, 62(1): 23-30.
[14]白爱娟, 刘长海, 刘晓东, 2008.TRMM多卫星降水分析资料揭示的青藏高原及其周边地区夏季降水日变化[J].地球物理学报, 51(3): 704-714.DOI: 10.3321/j.issn: 0001-5733.2008.03.011.
[15]陈玲, 周筠珺, 2015.青藏高原和四川盆地夏季降水云物理特性差异[J].高原气象, 34(3): 621-632.DOI: 10.7522/j.issn.1000-0534.2014.00036.
[16]常祎, 郭学良, 2016.青藏高原那曲地区夏季对流云结构及雨滴谱分布日变化特征[J].科学通报, 61(15): 1706-1720.
[17]傅云飞, 潘晓, 刘国胜, 等, 2016.基于云亮温和降水回波顶高度分类的夏季青藏高原降水研究[J].大气科学, 40(1): 102-120.DOI: 10.3878/j.issn.1006-9895.1507.15165.
[18]江吉喜, 范梅珠, 2002.夏季青藏高原上的对流云和中尺度对流系统[J].大气科学, 26(2): 263-270.DOI: 10.3878/j.issn.1006-9895.2002.02.12.
[19]李茂善, 马耀明, 孙方林, 等, 2008.纳木错湖地区近地层微气象特征及地表通量交换分析[J].高原气象, 27(4): 727-732.
[20]李茂善, 马耀明, 马伟强, 等, 2011.藏北高原地区干、 雨季大气边界层结构的不同特征[J].冰川冻土, 33(1): 72-79.DOI: 10.3969/j.issn.1000-6826.2014.06.03.
[21]栾澜, 孟宪红, 吕世华, 等, 2017.青藏高原一次对流降水模拟中边界层参数化和云微物理的影响研究[J].高原气象, 36(2): 283-293.DOI: 10.7522/j.issn.1000-0534.2016.00086.
[22]刘健, 2013.利用卫星数据分析青藏高原云微物理特性[J].高原气象, 32(1): 38-45.DOI: 10.7522/j.issn.1000-0534.2012.00005.DOI: 10.7522/j.issn.1000-0534.2012.00005.
[23]刘黎平, 楚荣忠, 宋新民, 等, 1999.GAME-TIBET青藏高原云和降水综合观测概况及初步结果[J].高原气象, 18(3): 441-450.
[24]马恩点, 2017.青藏高原东部和四川盆地强对流降水的数值模拟[D].南京: 南京信息工程大学.
[25]潘晓, 傅云飞, 2015.夏季青藏高原深厚及浅薄降水云气候特征分析[J].高原气象, 34(5): 1191-1203.DOI: 10.7522/j.issn.1000-0534.2014.00112.
[26]唐洁, 郭学良, 常祎, 2018.青藏高原那曲地区夏季一次对流云降水过程的云微物理及区域水分收支特征 [J].大气科学, 42(6): 1327-1343.DOI: 10.3878/j.issn.1006-9895.1801.17202.
[27]唐洁, 郭学良, 常祎, 2018.2014年夏季青藏高原云和降水微物理特征的数值模拟研究[J].气象学报, 76(6): 1053-1068.DOI: 10.11676/qxxb2018.054.
[28]吴国雄, 2004, 我国青藏高原气候动力学研究的近期进展[J].第四纪研究, 24(1): 1-9.DOI: 10.3321/j.issn: 1001-7410.2004. 01.001.
[29]吴国雄, 刘屹岷, 刘新, 等, 2005.青藏高原加热如何影响亚洲夏季的气候格局[J].大气科学, (1): 47-56+167-168.
[30]吴遥, 李跃清, 蒋兴文, 等, 2017.WRF模拟青藏高原东南部极端旱涝年降水的参数敏感性研究[J].高原气象, 36(3): 619-631.DOI: 10.7522/j.issn.1000-0534.2016.00057.
[31]解晋, 余晔, 刘川, 等, 2018.青藏高原地表感热通量变化特征及其对气候变化的响应[J].高原气象, 37(1): 28-42.DOI: 10. 7522/j.issn.1000-0534.2017.00019.
[32]谢欣汝, 游庆龙, 保云涛, 等, 2018.基于多源数据的青藏高原夏季降水与水汽输送的联系[J].高原气象, 37(1): 78-92.DOI: 10.7522/j.issn.1000-0534.2017.00030.
[33]叶笃正, 高由禧, 1979.青藏高原气象学[M].北京: 科学出版社.
[34]朱平, 俞小鼎, 2019.青藏高原东北部一次罕见强对流天气的中小尺度系统特征分析[J].高原气象, 38(1): 1-13.DOI: 10. 7522/j.issn.1000-0534.2018.00070.
[35]朱士超, 银燕, 金莲姬, 等, 2011.青藏高原一次强对流过程对水汽垂直输送的数值模拟[J].大气科学, 35(6): 1057-1068.DOI: 10.3878/j.issn.1006-9895.2011.06.06.
Outlines

/