Variation of Snow Cover and its Influence on Spring Runoff in the Source Region of Yellow River

  • Xiaojiao LIU ,
  • Rensheng CHEN ,
  • Junfeng LIU ,
  • Xiqiang WANG ,
  • Baogui ZHANG ,
  • Guohua LIU
Expand
  • <sup>1.</sup>Qilian Alpine Ecology and Hydrology Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;<sup>2.</sup>Key Laboratory of Ecohydrology of Inland River Basin, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;<sup>3.</sup>University of Chinese Academy of Sciences, Beijing 100049, China;<sup>4.</sup>Institute of Geographicial Science, Taiyuan Normal University, Jinzhong 030619, Shanxi, China

Received date: 2019-04-09

  Online published: 2020-04-28

Abstract

Snow cover is an important component of cryosphere, and strongly affects the hydrology and climate.The eastern part of the Qinghai-Tibetan Plateau, one of the three major snow-covered areas in China, is the source region of Yellow River, which has great impact on both climate change and water resource system.Based on the Yellow River source region data of snow depth, meteorological and measured runoff from 1978 to 2016, the characteristics of snow cover and its influence on spring runoff of this area were studied through the Mann-Kendall test, linear analysis and correlation analysis.The results showed that: (1) From 1978 to 2016, the source region of Yellow River revealed a tendency of a delayed initial snow date, forwarded final snow date, and declination of both duration and number of snow days.Particularly, the initial snow date, the final snow date and the duration of snow days passed the significant tests of p <0.05, p<0.05 and p<0.01, respectively.(2) The annual average snow depth had no significant change from 1978 to 2016 in this area.However, it showed a significant upward trend since the end of the 21 century and passed the significance test of p<0.1.(3) In general, compared with the snow depth, the number of snow days has more impact on the spring runoff in the source region of Yellow River.More specifically, according to the sensitivity analysis of the data from 1978 to 2016, 1% change of the of snow day number would induce of 0.60% spring runoff change, while the same amount change of the snow depth would only induce 0.25% spring runoff change.In addition, the spring runoff in April and May is more sensitive to snow cover change than March due to the increased average temperature and the larger amount of melted snow.(4) Different precipitation and temperature generates different snow cover, which results different responses to spring runoff.The snowmelt runoff is advanced under the climate warming, which shows an upward runoff trend in March while a downward trend in April and May.Meanwhile, due to the change of the regional atmospheric water vapor content, the spring runoff in the Yellow River source region significantly increased since the end of the 21 century.

Cite this article

Xiaojiao LIU , Rensheng CHEN , Junfeng LIU , Xiqiang WANG , Baogui ZHANG , Guohua LIU . Variation of Snow Cover and its Influence on Spring Runoff in the Source Region of Yellow River[J]. Plateau Meteorology, 2020 , 39(2) : 226 -233 . DOI: 10.7522/j.issn.1000-0534.2019.00074

References

[1]Barnett T P, Adam J C, Lettenmaier D P, 2005.Potential impacts of a warming climate on water availability in snow-dominated regions [J].Nature, 438(7066): 303.DOI: 10.1038/nature04141.
[2]Berghuijs W R, Woods R A, Hrachowitz M, 2014.A precipitation shift from snow towards rain leads to a decrease in streamflow [J].Nature Climate Change, 4(7): 583-586.DOI: 10.1038/N CLIMATE2246.
[3]Brown R D, Robinson D A, 2011.Northern Hemisphere spring snow cover variability and change over 1922 -2010 including an assessment of uncertainty [J].The Cryosphere, 5 (1): 219-229.DOI: 10.5194/tc-5-219-2011.
[4]Bulygina O N, Razuvaev V N, Korshunova N N, 2009.Changes in snow cover over Northern Eurasia in the last few decades [J].Environmental Research Letters, 4(4): 045026.DOI: 10.1088/1748-9326/4/4/045026.
[5]Carey S K, Boucher J L, Duarte C M, 2013.Inferring groundwater contributions and pathways to streamflow during snowmelt over multiple years in a discontinuous permafrost subarctic environment (Yukon, Canada) [J].Hydrogeology Journal, 21(1): 67-77.DOI: 10.1007/s10040-012-0920-9.
[6]Che T, Li X, Jin R, al et, 2008.Snow depth derived from passive microwave remote-sensing data in China [J].Annals Glaciology, 49: 145-154.
[7]Choi G, Robinson D A, Kang S, 2010.Changing northern hemisphere snow seasons [J].Journal of Climate, 23(19): 5305-5310.DOI: 10.1175/2010JCLI3644.1.
[8]Egli L, Jonas T, 2009.Hysteretic dynamics of seasonal snow depth distribution in the Swiss Alps [J].Geophysical Research Letters, 36(2): L02501.DOI: 10.1029/2008GL035545.
[9]Fichefet T, Maqueda M A M, 1999.Modelling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover [J].Climate Dynamics, 15(4): 251-268.
[10]Frei A, Robinson D A, 1999.Northern Hemisphere snow extent: Regional variability 1972 -1994 [J].International Journal of Climatology, 19(14): 1535-1560.
[11]Haeberli W, Cihlar J, Barry R G, 2000.Glacier monitoring within the global climate observing system [J].Annals of Glaciological, 31: 241-246.
[12]Hamed K H, 2008.Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis [J].Journal of Hydrology, 349(3/4): 350-363.DOI: 10.1016/j.jhydrol.2007.11.009.
[13]Han L, Tsunekawa A, Tsubo M, al et, 2014.Spatial variations in snow cover and seasonally frozen ground over northern China and Mongolia, 1988 -2010 [J].Global and Planetary Change, 116: 139-148.DOI: 10.1016/j.gl oplacha.2014.02.008.
[14]Hughes M G, Robinson D A, 1996.Historical snow cover variability in the Great Plains region of the USA: 1910 through to 1993 [J].International Journal of Climatology, 16(9): 1005-1018.
[15]IPCC, 2013.Climate change: The physical science basis[R].Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
[16]Jorgenson M T, Shur Y L, Pullman E R, 2006.Abrupt increase in permafrost degradation in Arctic Alaska [J].Geophysical Research Letters, 33(2): L02503.DOI: 10.1029/2005GL024960.
[17]Klaus J, McDonnell J J, 2013.Hydrograph separation using stable isotopes: Review and evaluation [J].Journal of Hydrology, 505: 47-64.DOI: 10.1016/j.jhydrol.2013.09.006.
[18]Li B F, Chen Y N, Chen Z S, al et, 2013.Variations of temperature and precipitation of snowmelt period and its effect on runoff in the mountainous areas of Northwest China [J].Journal of Geographical Sciences, 23(1): 17-30.DOI: 10.1007/s11442-013-0990-1.
[19]Liston G E, Hiemstra C A, 2011.The changing cryosphere: Pan-Arctic snow trends (1979 -2009) [J].Journal of Climate, 24(21): 5691-5712.DOI: 10.1175/JCLI-D-11-00081.1.
[20]Ma H, Yang D, Tan S K, al et, 2010.Impact of climate variability and human activity on streamflow decrease in the Miyun Reservoir catchment [J].Journal of Hydrology, 389(3/4), 317-324.DOI: 10.1016/j.jhydrol.2010.06.010.
[21]Marty C, 2006.Regime shift of snow days in Switzerland [J].Geophysical Research Letters, 35(12): L12501.DOI: 10.1029/2008GL03 3998.
[22]Piao S, Friedlingstein P, Ciais P, al et, 2007.Changes in climate and land use have a larger direct impact than rising CO<sub>2</sub> on global river runoff trends [J].Proceedings of the National academy of Sciences, 104(39): 15242-15247.
[23]Qin D H, Liu S Y, Li P J, 2006.Snow cover distribution, variability and response to climate change in western China [J].Journal of Climate, 19(9): 1820-1833.
[24]Rupp D E, Mote P W, Bindoff N L, al et, 2013.Detection and attribution of observed changes in Northern Hemisphere spring snow cover [J].Journal of Climate, 26(18): 6904-6914.DOI: 10. 1175/JC LI-D-12-00563.1.
[25]Schuur E A G, Abbott B, 2011.Climate change: High risk of permafrost thaw [J].Nature, 480(7375): 32-33.DOI: 10.1038/480032a.
[26]Stewart I T, 2009.Changes in snowpack and snowmelt runoff for key mountain regions [J].Hydrological Processes: An International Journal, 23(1): 78-94.DOI: 10.1002/hyp.7128.
[27]Vernekar A D, Zhou J, Shukla J, 1995.The effect of Eurasian snow cover on the Indian monsoon [J].Journal of Climate, 8(2): 248-266.
[28]Yue S, Pilon P, Cavadias G, 2002.Power of the Mann-Kendall and Spearman's rho tests for detecting monotonic trends in hydrological series [J].Journal of Hydrology, 259 (1/4), 254-271.
[29]Zheng H, Zhang L, Zhu R, al et, 2009.Responses of streamflow to climate and land surface change in the headwaters of the Yellow River Basin [J].Water Resources Research, 45(7): W00A19.DOI: 10.1029/2007W R006665.
[30]安迪, 李栋梁, 袁云, 等, 2009.基于不同积雪日定义的积雪资料比较分析 [J].冰川冻土, 31(6): 1019-10 27.
[31]白淑英, 史建桥, 高吉喜, 等, 2014.1979 -2010年青藏高原积雪深度时空变化遥感分析[J].地球信息科学, 16(4): 628-637.DOI: 10.3724/SP.J.1047.2014.00628.
[32]保云涛, 游庆龙, 谢欣汝, 2018.青藏高原积雪时空变化特征及年际异常成因[J].高原气象, 37(4): 899-910.DOI: 10.7522/j.issn.1000-0534.2017.00099.
[33]傅帅, 蒋勇, 徐士琦, 等, 2017.1960 -2015 年吉林省积雪初、 终日期变化特征及其与气温和降水的关系 [J].干旱气象, 35(4): 567-574.DOI: 10.11755/j.issn.1006-7639(2017)-04-0567.
[34]陈光宇, 李栋梁, 2011.东北及邻近地区累积积雪深度的时空变化规律 [J].气象, 37(5): 513-521.
[35]黄晓清, 唐叔乙, 次旺顿珠, 2018.气候变暖背景下西藏高原雪灾变化及其与大气环流的关系 [J].高原气象, 37(2): 325-332.DOI: 10.7522/j.issn.1000-0534.2017.00038.
[36]柯长青, 李培基, 1998.青藏高原积雪分布与变化特征 [J].地理学报, (3): 209-215.
[37]李燕, 闫加海, 张冬峰, 2018.青藏高原冬春积雪异常和中国东部夏季降水关系的诊断与模拟 [J].高原气象, 37(2): 317-324.DOI: 10.7522/j.issn.1000-0534.2017.00040.
[38]李弘毅, 王建, 2013.积雪水文模拟中的关键问题及其研究进展 [J].冰川冻土, 35(2): 430-437.DOI: 10.7522/j.issn.1000-0240.2013.0051.
[39]李培基, 1996.亚洲季风模拟试验中青藏高原积雪强迫问题的讨论 [J].高原气象, 15(3): 350-355.
[40]刘进军, 傅云飞, 李锐, 等, 2018.青藏高原云和大气对被动微波遥感积雪雪深的影响 [J].高原气象, 37(2): 305-316.DOI: 10.7522/j.issn.10 00-0534.2017.00050.
[41]刘俊峰, 陈仁升, 宋耀选, 2012.中国积雪时空变化分析 [J].气候变化研究进展, 8(5): 364-371.DOI: 10.3969/j.issn.1673-1719.2012.05.008.
[42]罗继, 路学敏, 2011.2004 -2009 年阿克苏地区积雪分布特征及其对春季径流的影响 [J]. 沙漠与绿洲气象, 5(5): 35-38.
[43]吕爱锋, 贾绍凤, 燕华云, 等, 2009.三江源地区融雪径流时间变化特征与趋势分析 [J].资源科学, 31(10): 1704-1709.
[44]马丽娟, 秦大河, 2012.1957 -2009年中国台站观测的关键积雪参数时空变化特征 [J].冰川冻土, 34(1): 1-11.
[45]秦大河, 效存德, 丁永建, 等, 2006.国际冰冻圈研究动态和我国冰冻圈研究的现状与展望 [J].应用气象学报, 17(6): 649-656.
[46]秦艳, 丁建丽, 赵求东, 等, 2018.2001 -2015 年天山山区积雪时空变化及其与温度和降水的关系 [J].冰川冻土, 40(2): 249-260.DOI: 10.7522/j.issn.1000-0240.2018.0029.
[47]沈永平, 王国亚, 苏宏超, 等, 2007.新疆阿尔泰山区克兰河上游水文过程对气候变暖的响应 [J].冰川冻土, 29(6): 845-854.
[48]田柳茜, 李卫忠, 张尧, 等, 2014.青藏高原 1979 -2007 年间的积雪变化 [J].生态学报, 34(20): 5974-5983.
[49]王欣, 丁永建, 张勇, 2019.冰川融水对山地冰冻圈冰湖水文效应的影响 [J].湖泊科学, 31(3): 609-620.DOI: 10.18307 /2019.030.
[50]王澄海, 王芝兰, 崔洋, 2009.40余年来中国地区季节性积雪的空间分布及年际变化特征 [J].冰川冻土, 31(2): 301-310.
[51]王海娥, 李生辰, 张青梅, 等, 2016.青海高原1961 -2013 年积雪日数变化特征分析 [J].冰川冻土, 38(5): 1219-1226.
[52]王宁练, 刘时银, 吴青柏, 等, 2015.北半球冰冻圈变化及其对气候环境的影响 [J].中国基础科学, 2: 9-14.
[53]王世金, 效存德, 2019.全球冰冻圈灾害高风险区: 影响与态势 [J].科学通报, 64(9): 891-901.DOI: 10.1360/N972018-01124.
[54]王顺久, 2017.青藏高原积雪变化及其对中国水资源系统影响研究进展[J].高原气象, 36 (5): 1153-1164.DOI: 10.7522 /j.issn. 1000-0534.2016.00117.
[55]吴雪娇, 鲁安新, 王丽红, 等, 2013.基于 MODIS 的长江源近10年积雪反照率时空分布及动态变化 [J].地理科学, 33(3): 371-377.DOI: 10.13249/j.cnki.sgs.2013.03.004.
[56]杨建平, 丁永建, 刘俊峰, 2006.长江黄河源区积雪空间分布与年代际变化 [J].冰川冻土, 28(5): 648-655.
[57]杨建平, 丁永建, 方一平, 2019.中国冰冻圈变化的适应研究: 进展与展望 [J].气候变化研究进展, 15(2): 178-186.DOI: 10.12006/j.issn.1673-1719.2018.080.
[58]杨青, 崔彩霞, 孙除荣, 等, 2007.1959 -2003 年中国天山积雪的变化 [J].气候变化研究进展, 3(2): 80-84.
[59]杨志刚, 达娃, 除多, 2017.近15a青藏高原积雪覆盖时空变化分析 [J].遥感技术与应用, 32(1): 27-36.DOI: 10.11873/j.issn. 1004-0323.2017.1.0027.
[60]姚檀栋, 秦大河, 沈永平, 等, 2013.青藏高原冰冻圈变化及其对区域水循环和生态条件的影响 [J].自然杂志, 35(3): 179-186.DOI: 10.3969/j.iss n.0253-9608.2013.03.004.
[61]张娟, 徐维新, 王力, 等, 2018.三江源腹地玉树地区动态融雪过程及其与气温关系分析 [J].高原气象, 37 (4): 936-945.DOI: 10.7522 /j.issn.1000-0534.2018.00001.
[62]张晓闻, 臧淑英, 孙丽, 2018.近 40 年东北地区积雪日数时空变化特征及其与气候要素的关系 [J].地球科学进展, 33(9): 958-968.DOI: 10.11867/j.issn.1001-8166.2018.09.0958.
[63]赵春雨, 严晓瑜, 李栋梁, 等, 2010.1961-2007 年辽宁省积雪变化特征及其与温度、 降水的关系 [J].冰川冻土, 32(3): 461-468.
[64]中国气象局, 2012.地面气象观测规范 [M].北京: 气象出版社.
[65]周扬, 徐维新, 白爱娟, 等, 2017.青藏高原沱沱河地区动态融雪过程及其与气温关系分析 [J].高原气象, 36(1): 24-32.DOI: 10.7522/j.issn.1000-0534.2016.00013.
Outlines

/