[1]Ba W, Du P, Liu T, al et, 2018.Simulating hydrological responses to climate change using dynamic and statistical downscaling methods: A case study in the Kaidu River Basin, Xinjiang, China[J].Journal of Arid Land, 10(6): 905-920.
[2]Cannon A J, Sobie S R, Murdock T Q, 2015.Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes?[J].Journal of Climate, 28(17): 6938-6959.
[3]Chen J, Brissette F P, Chaumont D, al et, 2013.Performance and uncertainty evaluation of empirical downscaling methods in quantifying the climate change impacts on hydrology over two North American river basins[J].Journal of Hydrology, 479: 200-214.
[4]Chen J, Brissette F P, Leconte R, 2011.Uncertainty of downscaling method in quantifying the impact of climate change on hydrology[J].Journal of Hydrology (Amsterdam), 401(3/4): 190-202.
[5]Chen R, Liu J, Kang E, al et, 2015.Precipitation measurement intercomparison in the Qilian Mountains, north-eastern Tibetan Plateau[J].The Cryosphere, 9(5): 1995-2008.
[6]Dickinson R E, Errico R M, Giorgi F, al et, 1989.A regional climate model for the western United States[J].Climatic Change, 15(3): 383-422.
[7]Eutschbein C, Seibert J, 2012.Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods[J].Journal of Hydrology (Amsterdam), 456-457: 12-29.
[8]Feddersen H, Andersen U, 2005.A method for statistical downscaling of seasonal ensemble predictions[J].Tellus, Series A (Dynamic Meteorology and Oceanography), 57(3): 398-408.
[9]Fekete, Balázs M, V?r?smarty, al et, 2004.Uncertainties in precipitation and their impacts on runoff estimates[J].Journal of Climate, 17(2): 294-304.
[10]Fowler H J, Blenkinsop S, Tebaldi C, 2007.Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling[J].International Journal of Climatology, 27(12): 1547-1578.
[11]Giorgi, Filippo, 1990.Simulation of regional climate using a limited area model nested in a general circulation model[J].Journal of Climate, 3(9): 941-964.
[12]Graham L P, Hagemann S, Jaun S, al et, 2007.On interpreting hydrological change from regional climate models[J].Climatic Change, 81(Suppl 1): 97-122.
[13]Groisman P Y, Koknaeva V V, Belokrylova T A, al et, 1975. Overcoming biases of precipitation measurement: A history of the USSR experience[J].Bulletin of the American Meteorological Society, 72(1991): 1725-1834.
[14]Gudmundsson L, Bremnes J B, Haugen J E, al et, 2012.Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations – a comparison of methods[J].Hydrology and Earth System Sciences, 16(9): 3383-3390.
[15]Gudmundsson L, Bremnes J B, Haugen J E, al et, 2012.Technical Note: Downscaling RCM precipitation to the station scale using quantile mapping-a comparison of methods[J].Hydrology and Earth System Sciences Discussions, 9(5), 6185–6201.
[16]Gutjahr O, Günther H, 2013.Comparing precipitation bias correction methods for high-resolution regional climate simulations using COSMO-CLM[J].Theoretical and Applied Climatology, 114(3/4): 511-529.
[17]Hagemann S, Chen C, Haerter J O, al et, 1920.Impact of a statistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models[J].Journal of Hydrometeorology, 12(4): 556-578.
[18]Hay L E, Wilby R L, Leavesley G H, 2000.A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States.[J].Jawra Journal of the American Water Resources Association, 36(2): 387-397.
[19]Justine R, Frederique S, Laurent L, 2017.A quantile mapping bias correction method based on hydroclimatic classification of the Guiana Shield[J].Sensors, 17(6): 1413-1429.
[20]Lafon T, Dadson S, Buys G, al et, 2013.Bias correction of daily precipitation simulated by a regional climate model: A comparison of methods[J].International Journal of Climatology, 33(6): 1367-1381.
[21]Lenderink G, Buishand A, Van D W, 2007.Estimates of future discharges of the river Rhine using two scenario methodologies: Direct versus delta approach[J].Hydrology and Earth System Sciences, 11(3): 1145-1159.
[22]Li C, Tang G, Hong Y, 2018.Cross-evaluation of ground-based, multi-satellite and reanalysis precipitation products: Applicability of the triple collocation method across mainland China[J].Journal of Hydrology, 562: 71-83.
[23]Pan X, Li X, Shi X, al et, 2012.Dynamic downscaling of near-surface air temperature at the basin scale using WRF-a case study in the Heihe River Basin, China[J].Frontiers of Earth Science, 6(3): 314-323.
[24]Pelt S C V, Kabat, Maat H W T, al et, 2009.Discharge simulations performed with a hydrological model using bias corrected regional climate model input[J].Hydrology and Earth System Sciences, 12(12): 2387-2397.
[25]Piani C, Haerter J O, Coppola E, 2010.Statistical bias correction for daily precipitation in regional climate models over Europe[J].Theoretical and Applied Climatology, 99(1/2): 187-192.
[26]Reiter P, Gutjahr O, Schefczyk L, al et, 2018.Does applying quantile mapping to subsamples improve the bias correction of daily precipitation?[J].International Journal of Climatology, 8(4): 1623-1633.
[27]Roosmalen L V, Sonnenborg T O, Jensen K H, al et, 2011.Comparison of hydrological simulations of climate change using perturbation of observations and distribution-based scaling[J].Vadose Zone Journal, 10(10): 136-150.
[28]Tang X, Zhang J, Wang G, al et, 2019.Evaluating suitability of multiple precipitation products for the Lancang River Basin[J].Chinese Geographical Science, 29(1): 37-57.
[29]Teng J, Potter N J, Chiew F H S, al et, 2015.How does bias correction of regional climate model precipitation affect modelled runoff?[J].Hydrology and Earth System Sciences, 19(2): 711-728.
[30]Theme?l M J, Gobiet A, Leuprecht A, 2011.Empirical-statistical downscaling and error correction of daily precipitation from regional climate models[J].International Journal of Climatology, 31(10): 1530-1544.
[31]Wang Y, Yang H, Yang D, al et, 2017.Spatial interpolation of daily precipitation in a high mountainous watershed based on gauge observations and a regional climate model simulation[J].Journal of Hydrometeorology, 18(3): 845-862
[32]Wood, Andrew W, 2002.Long-range experimental hydrologic forecasting for the eastern United States[J].Journal of Geophysical Research, 107D20): 4429.
[33]Yang D, 1988.Research on analysis and correction of systematic errors in precipitation measurement in Urumqi River basin, Tianshan[D].Lanzhou: Lanzhou Institute of Glaciology and Geocryology, Chinese Academy of Sciences, 169.
[34]Yang D, Goodison B E, Metcalfe J R, al et, 1995.Accuracy of Tretyakov precipitation gauge: Result of WMO intercomparison[J].Hydrological Processes, 9(8): 877-895.
[35]Yang D, Goodison B, Metcalfe J, al et, 2001.Compatibility evaluation of national precipitation gage measurements[J].Journal of Geophysical Research Atmospheres, 106(D2): 1481-1491.
[36]Ye B, Yang D, Ding Y, al et, 2004.A bias-corrected precipitation climatology for China[J].Journal of Hydrometeorology, 5(6): 1147-1160.
[37]陈仁升, 韩春坛, 宋耀选, 等, 2014a.葫芦沟流域2012年10m气象梯度数据集[Z].黑河计划数据管理中心, DOI: 10.3972/heihe.078.2014.db.
[38]陈仁升, 韩春坛, 宋耀选, 等, 2014b.葫芦沟流域2013年10m气象梯度数据集[DB].黑河计划数据管理中心.DOI: 10.3972/heihe.078.2014.db.
[39]程国栋, 肖洪浪, 徐中民, 等, 2006.中国西北内陆河水问题及其应对策略—以黑河流域为例[J].冰川冻土, 28(3): 406-413.
[40]何晓波, 叶柏生, 丁永建, 2009.青藏高原唐古拉山区降水观测误差修正分析[J].水科学进展, 20(3): 403-408.
[41]贾洋, 崔鹏, 2018.高山区多时间尺度Anusplin气温插值精度对比分析[J].高原气象, 37(3): 757-766.DOI: 10.7522/j.issn. 1000-0534.2017.00072.
[42]李弘毅, 王建, 白云洁, 等, 2009.黑河上游冰沟流域典型积雪期水文情势[J].冰川冻土, 31( 2) : 293-300.
[43]李弘毅, 王建, 郝晓华, 2012.祁连山区风吹雪对积雪质能过程的影响[J].冰川冻土, 34(5): 1084-1090.
[44]刘绿柳, 任国玉, 2012.百分位统计降尺度方法及在GCMs日降水订正中的应用[J].高原气象, 31(3): 715-722.
[45]潘小多, 李新, 2011.水平分辨率对WRF模式的影响研究——以黑河流域WRF模拟为例[J].科研信息化技术与应用, 2(6): 126-137.
[46]潘小多, 李新, 2013.黑河流域2000-2015年大气驱动数据集[DB].黑河计划数据管理中心.DOI: 10.3972/heihe.019.2013.db.
[47]潘小多, 李新, 冉有华, 等, 2012.下垫面对WRF模式模拟黑河流域区域气候精度影响研究[J].高原气象, 31(3): 657-667.
[48]童尧, 高学杰, 韩振宇, 等, 2017.基于RegCM4模式的中国区域日尺度降水模拟误差订正[J].大气科学, 41(6): 1156-1166.
[49]王磊, 陈仁升, 宋耀选, 2017.高寒山区面降水量获取方法及影响因素研究进展[J].高原气象, 36(6): 1546-1556.DOI: 10. 7522/j.issn.1000-0534.2017.00007.
[50]吴蔚, 梁卓然, 刘校辰, 2018.CDF-T方法在站点尺度日降水预估中的应用[J].高原气象, 37(3): 796-805.DOI: 10.7522/j.issn. 1000-0534.2017.00064.
[51]杨大庆, 姜彤, 张寅生, 等, 1988.天山乌鲁木齐河源降水观测误差分析及其改正[J].冰川冻土, 10(4): 384-400.
[52]杨大庆, 施雅风, 康尔泗, 等, 1990.乌鲁木齐河源高山区固态降水对比测量的主要结果[J].科学通报, 36(13): 1105-1109.
[53]叶柏生, 杨大庆, 丁永建, 等, 2007.中国降水观测误差分析及其修正[J].地理学报, 62(1): 3-13.
[54]赵求东, 叶柏生, 何晓波, 等, 2014.唐古拉山区Geonor T-200B雨雪量计日降水观测误差修正[J].高原气象, 33(2): 452-459.DOI: 10.7522/j.issn.1000-0534.2013.00013.
[55]郑勤, 陈仁升, 韩春坛, 等, 2018.祁连山TRwS204与中国标准雨量筒降水观测对比研究[J].高原气象, 37(3): 747-756.DOI: 10.7522/j.issn.1000-0534.2018.00039.
[56]周林, 潘婕, 张镭, 等, 2014.气候模拟日降水量的统计误差订正分析——以上海为例[J].热带气象学报, 30(1) : 137-144.
[57]周林, 潘婕, 张镭, 等, 2014.概率调整法在气候模式模拟降水量订正中的应用[J].应用气象学报, 25(3): 302-311.