Circulation Differences and Influence Mechanisms of Distribution Modes of Midsummer Precipitation in the Songhua River Basin

  • Dejun LOU ,
  • Yulian LIU ,
  • Ji WANG ,
  • Zhimin LI ,
  • Xianwei ZHOU
Expand
  • <sup>1.</sup>Qiqihar Meterological Bureau, Qiqihar 161006, Heilongjiang, China;<sup>2.</sup>Heilongjiang Climate Center, Harbin 150030, Heilongjiang, China;<sup>3.</sup>Beijing Climate Center, Beijing 100089, China

Received date: 2018-09-25

  Online published: 2020-04-28

Abstract

Based on midsummer rainfall data in the Songhua River Basin, NCEP reanalysis dataset and NOAA/CPC teleconnection indice from 1961 to 2017, the main spatial and temporal distribution, circulation characteristics and influence mechanisms of the midsummer precipitation in the Songhua River Basin are studied by varied statistical approaches. Results indicate that there mainly exist three dominant rainfall modes in the Songhua River Basin: The whole basin consistent rainfall mode, the northwest-southeast anti-phase rainfall mode and the northeast-southwest anti-phase rainfall mode. The first mode is affected by the PEA teleconnection type. In the years when the PEA teleconnection index is negative, the polar vortex being weak, circulation of the area is characterized by high-east and low-west distribution, and the vapor enhanced by the southwest low-level jet stream is transported to the Songhua River Basin. The interaction of PEA and EAP plays a major role in the generation of the second mode rainfall distribution. The Baikal Lake exhibits a significant negative anomaly, the cold air flows south along the ultrapolar path, and the warm and humid airflow is transported along the anomalous northerly subtropical high edge to the basin and intersects with the cold air in the southeast. When the third rainfall mode is positively abnormal, there is a significant negative anomaly from the Baikal to the Okhotsk Sea area, the strong East Asian summer monsoon causes the subtropical high to move northward, the circulation situation poses high-south and low-north distribution.

Cite this article

Dejun LOU , Yulian LIU , Ji WANG , Zhimin LI , Xianwei ZHOU . Circulation Differences and Influence Mechanisms of Distribution Modes of Midsummer Precipitation in the Songhua River Basin[J]. Plateau Meteorology, 2020 , 39(2) : 280 -289 . DOI: 10.7522/j.issn.1000-0534.2019.00032

References

[1]Barnston A G, Livezey B E, 1987.Classificartion, seasonality and persistence of low-frequency atmospheric circulation patterns[J]. Monthly Weather Review, 115: 1083-1126.
[2]程善俊, 管晓丹, 黄建平, 等, 2013. 利用GLDAS资料分析黄土高原半干旱区土壤湿度对气候变化的响应[J]. 干旱气象, 31(4): 641-649.
[3]丁婷, 陈丽娟, 2015a. 东北地区夏季旱涝的环流型及动力气候模式解释应用[J]. 高原气象, 34(4): 1119-1130.DOI: 10.7522/j.issn.1000-0534.2014.00101.
[4]丁婷, 陈丽娟, 崔大海, 2015b.东北夏季降水的年代际特征及环流变化[J].高原气象, 34(1): 220-229.DOI: 10.7522/j.issn. 1000-0534.2013.00155.
[5]李崇银, 2000. 气候动力学引论(第二版)[M]. 北京: 气象出版社.
[6]李想, 李维京, 赵振国, 2005. 我国松花江流域和辽河流域降水的长期变化规律和未来趋势分析[J]. 应用气象学报, 16(5): 593-599.
[7]李妍, 2016. 北方夏季降水的变化特征及其前兆信号[D]. 成都: 成都信息工程大学.
[8]李燕, 闫加海, 张冬峰, 2018.青藏高原冬春积雪异常和中国东部夏季降水关系的诊断与模拟[J].高原气象, 37(2): 317-324.DOI: 10.7522/j.issn.1000-0534.2017.00040.
[9]李勇, 陆日宇, 何金海, 2007. 影响我国冬季温度的若干气候因子[J]. 大气科学, 31(3): 505-514.
[10]龙妍妍, 范广洲, 李飞, 等, 2018. 高原夏季风对中国夏季极端降水的影响研究[J]. 高原气象, 37(1): 1-12. DOI: 10.7522/j.issn.1000-0534. 2017.00010.
[11]陆志华, 夏自强, 于岚岚, 等, 2012. 1958 -2009年松花江流域降水时空演变特征[J]. 自然资源学报, 27(6): 990-1000.
[12]单玉芬, 宋长虹, 2016. 黑龙江省松花江干流历年洪涝灾害损失情况分析[J]. 水利科技与经济, 22(6): 78-79.
[13]申红艳, 陈丽娟, 胡泊, 等, 2017.西北中部夏季降水主要空间型及环流特征[J].高原气象, 36(2) : 455-467.DOI: 10.7522/j.issn. 1000-0534. 2016.00139.
[14]施能, 朱乾根, 古文保, 等, 1994. 夏季北半球500 hPa月平均场遥相关型及其与我国季风降水异常的关系[J]. 南京气象学院学报, 17(1): 1-10.
[15]孙力, 安刚, 高枞亭, 等, 2002. 1998年夏季嫩江和松花江流域东北冷涡暴雨的成因分析[J]. 应用气象学报, 13(2): 156-162.
[16]孙力, 安刚, 2003. 北太平洋海温异常对中国东北地区旱涝的影响[J]. 气象学报, 61(3): 346-353.
[17]孙颖, 徐海明, 邓洁淳, 2014. 太平洋-日本遥相关型的年代际变化特征及其成因[J]. 大气科学, 38(6): 1055-1065.
[18]汤绪, 钱维宏, 梁萍, 2006. 东亚夏季风边缘带的气候特征[J].高原气象, 25(3): 375-381.
[19]王富强, 许士国, 2009. ENSO事件对松花江流域夏季降水的影响[J]. 华北水利水电学院学报, 30(1): 1-4.
[20]王遵娅, 丁一汇, 2008. 中国雨季的气候学特征[J]. 大气科学, 32(1): 1-13.
[21]肖志祥, 谭江红, 2018. 长江流域夏季降水异常主模态变化特征及其成因分析[J].高原气象, 37(5): 1304-1312.DOI: 10. 7522/j.issn.1000-0534.2018.00019.
[22]许田田, 范广洲, 张永莉, 等, 2018. 东亚与太平洋地区热力差异对东亚季风的影响[J].高原气象, 37(6): 1643-1654.DOI: 10. 7522/j.issn. 1000-0534.2018.00053.
[23]张长灿, 李栋梁, 王慧, 等, 2017. 青藏高原春季地表感热特征及其对中国东部夏季雨型的影响[J]. 高原气象, 36(1): 13-23. DOI: 10.7522/j.issn. 1000-0534.2016.00028.
Outlines

/