Based on FY-2E TBB data, ERA5 reanalysis data and WRF v3.9.1.1 model, mesoscale synoptic meteorology analysis and numerical simulation are carried on for the sudden rainstorm in Leishan county on 27 May 2015.The results indicate that: (1) Southwest low-level jet, shear line and surface convergence line are the direct effect systems of this terrain sudden rainstorm.(2) There is an obvious correspondence between the low value area of TBB and the sudden rainstorm area, the decrease of TBB value indicates the increase of precipitation, otherwise it indicates the decrease of precipitation.(3) The simulation effect of ERA5 reanalysis data that is as the initial field for sudden rainstorm is better than that of FNL analysis data and ERA-Interim reanalysis data.(4) The area and intensity of rainstorm are influenced by the terrain through modulating the dynamic and water vapor field of mountain.The water vapor and unstable energy is accumulated on the windward slope through the uplifting effect of the terrain, which enhances the instability of the stratification and triggers the unstable development of convection under the action of strong ascending motion.(5) The topography of Mountain Leigong has a significant effect on sudden rainstorm: With the increasing of terrain height, rain belt expanded and rainfall increased; On the contrary, the rain belt moves west-ward and the rainfall decreases.
[1]Heikkil? U, Sandvik A, Sorteberg A, 2011.Dynamical downscaling of ERA-40 in complex terrain using the WRF regional climate model[J].Climate Dynamics, 37(7/8): 1551-1564.DOI: 10.1007/s00382-010-0928-6.
[2]Jiang Y Q, Wang Y, Chen C H, al et, 2019.A numerical study of mesoscale vortex formation in the midlatitudes: The role of moist processes[J].Advances in Atmospheric Sciences, 36(1): 65-78.DOI: 10.1007/s00376-018-7234-3.
[3]Skamarock W C, Klemp J B, Dudhia J, al et, 2008.A description of the advanced research WRF version3.NCAR Tech[N].
[4]Note NCAR/TN-475+STR, 113pp.DOI: 10.5065/D68S4MVH.
[5]毕宝贵, 刘月巍, 李泽椿, 2006.秦岭大巴山地形对陕南强降水的影响研究[J].高原气象, 25(3): 131-140.
[6]赵庆云, 张武, 陈晓燕, 等, 2018.一次六盘山两侧强对流暴雨中尺度对流系统的传播特征[J].高原气象, 37(3): 767-776.DOI: 10.7522/j.issn.1000-0534.2017.00068.
[7]宋雯雯, 李国平, 龙柯吉, 等, 2018.两类动力因子对四川盆地一次低涡暴雨的应用研究[J].高原气象, 37(5): 1289-1303.DOI: 10.7522/j.issn.1000-0534.2018.00015.
[8]曾勇, 杨莲梅, 2018.新疆西部一次极端暴雨事件的成因分析[J].高原气象, 37(5): 1220-1232.DOI: 10.7522/j.issn.1000-0534.2018.00014.
[9]陈明, 傅抱璞, 于强, 1995.山区地形对暴雨的影响[J].地理学报, 50(3): 256-263.DOI: 10.11821/xb199503008.
[10]池再香, 白慧, 黄红, 2008.夏季黔东南州局地暴雨与西太副高环流的关系[J].高原气象, 27(1): 176-183.
[11]杨秀庄, 牟克林, 2012.贵州2011年9月17日一次中β尺度局地特大暴雨特征分析[J].贵州气象, 36(4): 6-9.DOI: 10.3969/j.issn.1003-6598.2012.04.002.
[12]杨静, 罗宇翔, 等, 2011.贵州南部山区一次大暴雨的数值模拟[J].气象科学, 31(3): 298-304.DOI: 10.3969/j.issn.1009-0827. 2011.03.008.
[13]杜娟, 文莉娟, 苏东生, 2019.三套再分析资料在青藏高原湖泊模拟研究中的适用性分析[J].高原气象, 38(1): 101-113.DOI: 10.7522/j.issn.1000-0534.2018.00110.
[14]高守亭, 周玉淑, 冉令坤, 2018.我国暴雨形成机理及预报方法研究进展[J].大气科学, 42(4): 833-846.DOI: 10.3878/j.issn. 1006-9895.1802.17277.
[15]顾欣, 田楠, 潘平珍, 2006.黔东南暴雨气候特征及其地形影响[J].气象科技, 34(4): 441-445.DOI: 10.3969/j.issn.1671-6345. 2006.04.017.
[16]康延臻, 靳双龙, 彭新东, 等, 2018.单双参云微物理方案对华北“7·20”特大暴雨数值模拟对比分析[J].高原气象, 37(2): 481-494.DOI: 10.7522/j.issn.1000-0534.2017.00026.
[17]李国平, 2016.近25年来中国山地气象研究进展[J].气象科技进展, 6(3): 115-122.DOI: 10.3969/j.issn.2095-1973.2016. 03.016.
[18]廖菲, 洪延超, 郑国光, 2007.地形对降水的影响研究概述[J].气象科技, 35(3): 309-316.DOI: 10.3969/j.issn.1671-6345. 2007.03.001.
[19]廖捷, 徐宾, 张洪政, 2013.地面站点观测降水资料与CMORPH卫星反演降水产品融合的试验效果评估[J].热带气象学报, 5(5): 865-873.DOI: 10.3969/j.issn.1004-4965.2013.05.017.
[20]聂云, 周继先, 顾欣, 等, 2018.“6.18”梅雨锋西段黔东南大暴雨个例诊断分析[J].暴雨灾害, 37(5): 445-454.DOI: 10.3969/j.issn.1004-9045.2018.05.007.
[21]石定朴, 王洪庆, 1996.中尺度对流系统红外云图云顶黑体温度的分析[J].气象学报, 54(5): 600-611.DOI: 10.11676/qxxb1996.062.
[22]陶诗言, 1980.中国之暴雨[M].北京: 科学出版社.
[23]王晖, 隆霄, 温晓培, 等, 2017.2012年宁夏“7·29”大暴雨过程的数值模拟研究[J].高原气象, 36(1): 268-281.DOI: 10.7522/j.issn.1000-0534.2016.00017.
[24]王文, 程攀, 2013.“7.27”陕北暴雨数值模拟与诊断分析[J].大气科学学报, 36(2): 174-183.DOI: 10.3969/j.issn.1674-7097. 2013.02.006.
[25]袁有林, 杨秀洪, 杨必华, 等, 2017.不同初始场及其扰动对WRF模拟暴雨的影响[J].沙漠与绿洲气象, 11(1): 67-75.DOI: 10.12057/j.issn.1002-0799.2017.01.009.
[26]袁有林, 左洪超, 董龙翔, 等, 2015.地形和水汽对“7.13”陕西暴雨影响的数值试验[J].干旱气象, 33(2): 291-302.DOI: 10. 11755/j.issn.1006-7639(2015)-02-0291.
[27]张弘, 孙伟, 2005.初夏青藏高原东侧一次特大暴雨的综合分析[J].高原气象, 24(2): 232-239.
[28]张芹, 王洪明, 张秀珍, 等, 2018.2017年山东雨季首场暖区暴雨的特征分析[J].高原气象, 37(6): 250-258.DOI: 10.7522/j.issn.1000-0534.2018.00052.
[29]章淹, 1983.地形对降水的作用[J].气象, 9(2): 9-13.DOI: 10. 7519/j.issn.1000-0526.1983.2.003.
[30]赵海英, 薄燕青, 邱贵强, 等, 2017.地形对山西暴雨影响的数值模拟研究[J].气象与环境科学, 40(2): 84-91.DOI: 10.16765/j.cnki.1673-7148.2017.02.014.
[31]赵庆云, 张武, 陈晓燕, 等, 2018.一次六盘山两侧强对流暴雨中尺度对流系统的传播特征[J].高原气象, 37(3): 767-776.DOI: 10.7522/j.issn.1000-0534.2017.00068.
[32]周璇, 罗亚丽, 郭学良, 2015.CMORPH卫星-地面自动站融合降水数据在中国南方短时强降水分析中的应用[J].热带气象学报, 31(3): 333-344.DOI: 10.16032/j.issn.1004-4965.2015. 03.005.
[33]周长艳, 唐信英, 邓彪, 2015.一次四川特大暴雨灾害降水特征及水汽来源分析[J].高原气象, 34(6): 1636-1647.DOI: 10. 7522/j.issn.1000-0534.2014.00121.
[34]朱乾根, 林锦瑞, 寿绍文, 等, 1992.天气学原理和方法[M].北京: 气象出版社.