Using the data of ERA5 reanalysis as well as a new generation of radar mosaic data, a sudden rainstorm in Northeast Sichuan Basin was fully analyzed, including its influencing systems and dynamic impact factors.The analysis indicates that the predominate influencing systems of this process are the middle-latitude trough in 500 hPa moving to east, the Western Pacific subtropical high which extends to west, the southwest low-level jet(SWLJ) in the lower troposphere and the shear line of low layer.The large-scale SWLJ and the meso-micro scale low-level jet in mountainous terrain built a dynamical coupling of the positive vorticity column and strong divergence column in low-level.The strong upward vertical movement, result from the convergence ascending of low-level jet exit region and the local topographic forcing, which is the trigger condition in the rainstorm.The potential instability stratification established by the low-level jet is the thermal condition of this rainstorm.The main reason for the increase of precipitation in the second stage is that cold air gradually intrudes into the upper layer from the lower layer.The topography in Northeast Sichuan Basin is the enhancement factor in the process of rainstorm.It influences the vertical ascending motion through the uplift effects.The windward slope of Qin-Ba mountainous is relatively strong on first stage and the eastern leeward slope of the Qinghai-Tibetan Plateau is relatively strong on the second stage.What’s more, the mountains terrain in Northeast Sichuan Basin make the mesoscale convection systems (MCSs) stagnant in Sichuan Basin and develop fully through the blocking effect.
[1]Basist A, Bell G D, Meentemeyer V, 1994.Statistical relationships between topography and precipitation patterns[J].Journal of Climate, 7(9): 1305-1315.DOI: 10.1175/1520-0442(1994)007<1305: SRBTAP>2.0.CO; 2.
[2]Danard M, 1977.A simple model for mesoscale effects of topography on surface winds[J].Monthly Weather Review, 105(5): 572-581.DOI: 10.1175/1520-0493(1977)105<0572: asmfme>2.0.co; 2.
[3]Findlater J, 1969.A major low-level air current near the Indian Ocean during the northern summer[J].Quarterly Journal of the Royal Meteorological Society, 95: 362-380.DOI: 10.1002/qj. 49709540409.
[4]Saulo C, Ruiz J, Skabar, al et, 2007.Synergism between the low-level jet and organized convection at its exit region [J].Monthly Weather Review, 135(4): 1310-1326.DOI: 10.1175/mwr3317.1.
[5]Spreen, William C, 1947.A determination of the effect of topography upon precipitation[J].Transactions, American Geophysical Union, 28(2): 285-290.DOI: 10.1029/TR028i002p00285.
[6]曾勇, 杨莲梅, 2018.新疆西部一次极端暴雨事件的成因分析[J].高原气象, 37(5): 81-93.DOI: 10.7522/j.issn.1000-0534. 2018.00014.
[7]陈丹, 周长艳, 熊光明, 等, 2018.近53年四川盆地夏季暴雨变化特征分析[J].高原气象, 37(1): 197-206.DOI: 10.7522/j.issn.1000-0534.2017.00022.
[8]陈静, 李川, 谌贵珣, 2002.低空急流在四川“9.18”大暴雨中的触发作用[J].气象, 28(8): 24-29.DOI: 10.7519/j.issn.1000-0526. 2002.8.005.
[9]邓承之, 2016.2014年一次渝东北大暴雨天气成因诊断分析[J].气象科技, 44(2): 290-296.DOI: 10.3969/j.issn.1671-6345. 2016.02.019.
[10]丁一汇, 蔡则怡, 李吉顺, 1978.1975年8月上旬河南特大暴雨的研究[J].大气科学, 2(4): 276-289.
[11]顾清源, 肖递祥, 黄楚惠, 等, 2009.低空急流在副高西北侧连续性暴雨中的触发作用[J].气象, 35(4): 59-67.DOI: 10.7519/j.issn.1000-0526.2009.4.008.
[12]何光碧, 2006.高原东侧陡峭地形对一次盆地中尺度涡旋及暴雨的数值试验[J].高原气象, 25(3): 430-441.
[13]姜勇强, 王元, 2010.地形对1998年7月鄂东特大暴雨鞍型场的影响[J].高原气象, 29(2): 297-308.
[14]蒋兴文, 王鑫, 李跃清, 等, 2008.近20年四川盆地大暴雨发生的大尺度环流背景[J].长江流域资源与环境, 17(s1): 132-137.DOI: 10.3969/j.issn.1004-8227.2008.z1.024.
[15]李川, 陈静, 何光碧, 2006.青藏高原东侧陡峭地形对一次强降水天气过程的影响[J].高原气象, 25(3): 442-450.
[16]李娟, 孙建华, 张元春, 等, 2016.四川盆地西部与东部持续性暴雨过程的对比分析[J].高原气象, 35(1): 64-76.DOI: 10.7522/j.issn.1000-0534.2014.00150.
[17]陆汉城, 杨国祥, 2015.中尺度天气原理和预报[M].北京: 气象出版社.
[18]闵文彬, 陈忠明, 高文良, 等, 2003."2001.9.18"华西突发性强暴雨的中尺度分析[J].高原气象, 22(1): 110-118.
[19]慕建利, 李泽椿, 李耀辉, 2009.高原东侧特大暴雨过程中秦岭山脉的作用[J].高原气象, 28(6): 1282-1290.
[20]师锐, 何光碧, 龙柯吉, 2015.一次四川盆地低涡型特大暴雨过程分析[J].干旱气象, 33(5): 845-855.DOI: CNKI: SUN: GSQX.0.2015-05-020.
[21]孙建华, 赵思雄, 2002.华南“94·6”特大暴雨的中尺度对流系统及其环境场研究—Ⅱ.物理过程、 环境场以及地形对中尺度对流系统的作用[J].大气科学, 26(5): 633-646.
[22]孙淑清, 翟国庆, 1980.低空急流的不稳定性及其对暴雨的触发作用[J].大气科学, 4(4): 327-337.
[23]陶诗言, 1980.中国之暴雨[M].北京: 科学出版社.
[24]陶诗言, 丁一汇, 周晓平, 1979.暴雨和强对流天气的研究[J].大气科学, 3(3): 227-238.
[25]王安宇, 吴池胜, 林文实, 等, 1999.关于我国东部夏季风进退的定义[J].高原气象, 18(3): 400-408.
[26]王沛东, 李国平, 2016.秦巴山区地形对一次西南涡大暴雨过程影响的数值试验[J].云南大学学报(自然科学版), 38(3): 418-429.DOI: 10.7540/j.ynu.20150765.
[27]吴海英, 曾明剑, 尹东屏, 等, 2010.一次苏皖特大暴雨过程中边界层急流结构演变特征和作用分析[J].高原气象, 29(6): 1431-1440.
[28]肖递祥, 屠妮妮, 祁生秀, 2015.龙门山沿线暴雨过程的诊断分析及数值试验[J].高原气象, 34(1): 113-123.DOI: 10.7522/j.issn.1000-0534.2013.00112.
[29]肖递祥, 杨康权, 祁生秀, 2012.2011年7月四川盆地两次突发性暴雨过程的对比分析[J].气象, 38(12): 1482-1491.DOI: 10. 7519/j.issn.1000-0526.2012.12.005.
[30]郁淑华, 何光碧, 滕家谟, 1997.青藏高原切变线对四川盆地西部突发性暴雨影响的数值试验[J].高原气象, 16(3): 306-311.
[31]翟国庆, 丁华君, 孙淑清, 等, 1999.与低空急流相伴的暴雨天气诊断研究[J].大气科学, 23(1): 112-118.
[32]张芹, 王洪明, 张秀珍, 等, 2018.2017年山东雨季首场暖区暴雨的特征分析[J].高原气象, 37(6): 250-258.DOI: 10. 7522/j.issn.1000-0534.2018.00052.
[33]朱乾根, 2007.天气学原理和方法[M].北京: 气象出版社.