Using the ERA-Interim reanalysis data provided by the European Centre for Medium-range Weather Forecasts (ECMWF) and the atmospheric composition data provided by the Microwave Limb Sounder (MLS), the impacts of the south-north displacement in the South Asia High (SAH) on the distribution of water vapor, ozone (O3) and carbon monoxide (CO) in the Upper Troposphere Lower Stratosphere (UTLS) of the Asian monsoon region are analyzed.The results show that: (1) Water vapor and CO at 200 hPa are higher over the Iranian plateau, northeastern Tibetan Plateau and northeastern China during northward displaced SAH (NSAH) than those during southward displaced SAH (SSAH), except in the north of the Bay of Bengal and in the northern part of the Indochina Peninsula.At 100 hPa, the water vapor in the SAH range during NSAH is higher than those during SSAH, while the CO is higher during SSAH than those during NSAH.At 68 hPa, CO in the SAH range during NSAH are weaker than those during SSAH.The distribution of ozone at different heights is roughly opposite to those of CO.(2) During NSAH the convection activities in the west and north side of SAH is stronger than those during SSAH and the intensity of SAH north of the 30°N is also stronger than those during SSAH.Stronger convection during NSAH leads to more lower-tropospheric air transporting upwards, resulting in the higher (lower) values of water vapor and CO (O3) at 215 hPa over the Iranian plateau and Qinghai-Tibet Plateau to the northeastern China than those during SSAH.(3) At 100 hPa, the geopotential height in the south of the anticyclonic circulation is higher and the vertical ascending motion is stronger during SSAH than those during NSAH.Thus, tropospheric air with high concentration water vapor and CO and low concentration ozone are transported upward.As a result, the concentration of 100-hPa CO (O3) at 100 hPa is stronger (lower) during SSAH than that during NSAH.For the water vapor, the tropopause temperature in the SAH area is lower during SSAH.Effected of “condensation and dehydration”, the 100-hPa water vapor in the SSAH is lower than that in the SSAH.(4) The “trapping” effect during SSAH is weaker than those during NSAH, causing the stronger ascending motion and transporting more air with higher (lower) concentrated CO (O3) to 68 hPa.
Houwang TU
,
Hongying TIAN
,
Xiran XU
,
Ruhua ZHANG
. Influence of the South-North Displacement of South Asia High on the Distribution of Atmospheric Composition in the Upper Troposphere-Lower Stratosphere over the Asian Monsoon Region[J]. Plateau Meteorology, 2020
, 39(2)
: 333
-346
.
DOI: 10.7522/j.issn.1000-0534.2019.00054
[1]Bannister R N, Neill A O, Gregory A R, al et, 2012.The role of the south-east Asian monsoon and other seasonal features in creating the tape-recorder’ signal in the Unified Model[J].Quarterly Journal of the Royal Meteorological Society, 130(599): 1531-1554.DOI: 10.1256/qj.03.106.
[2]Bian J C, Chen H B, Zhao Y L, al et, 2002.Variation features of total atmospheric ozone in Beijing and Kunming based on Dobson and TOMS data[J].Advances in Atmospheric Sciences, 19(2): 279-286.DOI: 10.1007/s00376-002-0022-z.
[3]Chen B, Xu X D, Yang S, al et, 2012.On the temporal and spatial structure of troposphere-to-stratosphere transport in the lowermost stratosphere over the Asian monsoon region during boreal summer[J].Advances in Atmospheric Sciences, 29(6): 1305-1317.DOI: 10.1007/s00376-012-1171-3.
[4]Dethof A, Neill O, Slingo J M, al et, 1999.A mechanism for moistening the lower stratosphere involving the Asian summer monsoon[J].Quarterly Journal of the Royal Meteorological Society, 125(556): 1079-1106.DOI: 10.1002/qj.1999.49712555602.
[5]Fu R, Hu Y, Wright J S, al et, 2006.Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau[J].Proceedings of the National Academy of Sciences of the United States of America, 103(15): 5664-5669.DOI: www.pnas.org/cgi/doi/10.1073/pnas.0601584103.
[6]Fueglistaler S, Bonazzola M, Haynes P H, al et, 2005.Stratospheric water vapor predicted from the Lagrangian temperature history of air entering the stratosphere in the tropics[J].Journal of Geophysical Research: Atmospheres, 110 (D8: D08107.DOI: 10.1029/2004JD005516.
[7]Gettelman A, Kinnison D E, Dunkerton T J, al et, 2004.Impact of monsoon circulations on the upper troposphere and lower stratosphere[J].Journal of Geophysical Research: Atmospheres, 109: D22101.DOI: 10.1029/ 2004JD004878.
[8]Guo D, Su Y C, Shi C H, al et, 2015.Double core of ozone valley over the Tibetan Plateau and its possible mechanisms[J].Journal of Atmospheric and Solar-Terrestrial Physics, 130: 127-131.DOI: 10.1016/j.jastp.2015.05.018.
[9]Guo D, Su Y C, Zhou X J, al et, 2017.Evaluation of the trend uncertainty in summer ozone valley over the Tibetan Plateau in three reanalysis datasets[J].Journal of Meteorological Research, 31(2): 431-437.DOI: CNKI: SUN: QXXW.0.2017-02-014.
[10]Guo D, Wang P X, Zhou X J, al et, 2012.Dynamic effects of the South Asian high on the ozone valley over the Tibetan Plateau[J].Acta Meteorologica Sinica, 26(2): 216-228.DOI: 10.1007/s13351-012-0207-2.
[11]He J H, Wen M, Wang L J, al et, 2006.Characteristics of the onset of the Asian Summer Monsoon and the importance of Asian Australian "Land Bridge"[J].Advances in Atmosphere Sciences, 6: 951-963.DOI: 10.1007/s00376-006-0951-z.
[12]Hoinka P K, 1998.Statistic of the global tropopause pressure[J] Monthly Weather Review, 126(12): 3303-3325, 1998.DOI: 10.1175/1520-0493126.
[13]Huang G, Qu X, Hu K, 2011.The impact of the tropical Indian Ocean on South Asian high in boreal summer[J].Advances in Atmosphere Sciences, 28: 421-432.DOI: 10.1007/s00376-010-9224-y.
[14]Jun M, Takio M, 2000.Annual Changes of Tropical Convective Activities as Revealed from Equatorially Symmetric OLR Data[J].Journal of the Meteorological Society of Japan, 78(5): 543-561.DOI: 10.2151/jmsj1965.78.5-543.
[15]Krishnamurti T N, Daggupaty S M, Fein J, al et, 1973.Tibetan high and upper tropospheric tropical circulations during northern summer[J].Bulletin of the American Meteorological Society, 54: 1234-1249.
[16]Li Q, Jiang J H, Wu D L, al et, 2005a.Convective outflow of south Asian pollution: a global CTM simulation compared with EOS MLS observations [J].Geophysical Research Letters, 32(14): 1-4.DOI: 10.1029/2005GL022762.
[17]Li Q, Jiang J H, Wu D L, et a1, 2005b.Trapping of Asian pollution by the Tibetan anticyclone: A globa1 CTM simulation compared with EOS MLS observations[J].Geophysical Research Letters, 32: L14826.DOI: 10.1029/2005GL022762.
[18]Livesey N J, al et, 2005.Data quality document for the EOS MLS Version 1.5 level 2 ddata set[R].Pasadena, California: Jet Propulsion Laboratory, Tech.Rep.[2019-07-01].http: //mls.jpl.nasa.gov.
[19]Livesey N J, Filipiak M J, Froidevaux L, al et, 2007.Validation of Aura microwave limb sounder O<sub>3</sub> and CO observations in the upper troposphere and lower stratosphere[J].Journal of Geophysical Research: Atmospheres, 113(D15): S02-S15.DOI: 10. 1029/2007ID008805.
[20]Luo Y, Zhang R, Qian W, al et, 2011.Intercomparison of deep convection over the Tibetan Plateau-Asian monsoon region and subtropical North America in boreal summer using Cloudsat/CALIPSO data[J].Journal of Climate, 24(8): 2164-2177.DOI: 10.1080/02841850802616752.
[21]Mason R B, Anderson C E, 1963.The development and decay of the 100 mb summertime anticyclone over Southern Asia [J].Monthly Weather Review, 91(1): 3-12.DOI: 10.1175/1520-0493091.
[22]Novelli P, Masarie K, Lang P, 1998.Distributions and recent changes of carbon monoxide in the lower troposphere[J].Journal of Geophysical Research Atmospheres, 103(D15): 19015-19033.DOI: 10.1029/98JD01366.
[23]Park M, Randel W J, Emmons L K, al et, 2008.Chemical isolation in the Asian monsoon anticyclone observed in Atmospheric Chemistry Experiment (ACE-FTS) data[J].Atmospheric Chemistry and Physics, 8(3): 757-764.DOI: 10.5194/acp-8-757-2008.
[24]Park M, Randel W J, Emmons L K, al et, 2009.Transport pathways of carbon monoxide in the Asian summer monsoon diagnosed from Model of Ozone and Related Tracers (MOZART)[J].Journal of Geophysical Research Atmospheres, 114(D8): 303-313.DOI: 10.1029/2008JD010621.
[25]Park M, Randel W J, Gettelman A, al et, 2007.Transport above the Asian summer monsoon anticyclone inferred from Aura Microwave Limb Sounder tracers[J].Journal of Geophysical Research Atmospheres, 112(D16): 16309-16324.DOI: 10.1029/2006JD008294.
[26]Park M, Randel W J, Kinnison D E, et a1, 2004.Seasonal variation of methane water vapor, and nitrogen oxides near the tropopause: Satellite observations and model simulations[J].Geophysical Research Letters, 109: D03302.DOI: 10.1029/2003JD003706.
[27]Piers M, Forster D F, Keith P S, 1999.Stratospheric water vapor changes as a possible contributor to observed stratospheric cooling[J].Geophysical Research Letters, 26(21): 3309-3312.DOI: 10.1029/1999GL010487.
[28]Randel W J, Park M, Emmons L, al et, 2010.Asian monsoon transport of pollution to the stratosphere[J].Science, 328(5798): 611-613.DOI: 10.126/science.1182274.
[29]Randel W J, Park M, 2006.Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS)[J].Journal of Geophysical Research Atmospheres, 111(D12: D12314.DOI: 10.1029/2005JD006490.
[30]Randel W J, Wu F, Gettelman A, et a1, 2001.Seasonal variation of water vapor in the lower stratosphere observed in Halogen Occultation Experiment data[J].Journal of Geophysical Research Atmospheres, 106(13): 14313-14325.
[31]Rosenlof K H, 2003.How water enters the stratosphere[J].Science, 302 (5651): 1691-1692.DOI: 10.1126/science.1092703.
[32]Rosenlof K H, Tuck A F, Kelly K K, al et, 1997.Hemispheric asymmetries in water vapor and inferences about transport in the lower stratosphere[J].Journal of Geophysical Research: Atmospheres, 102(D11): 13213-13234.DOI: 10.1029/97JD00873.
[33]Sepúlveda E, Schneider M, Hase F, al et, 2014.Tropospheric CH4 signals as observed by NDACC FTIR at globally distributed sites and comparison to GAW surface in situ measurements [J].Atmospheric Measurement Techniques.7(7): 2337-2360.DOI: 10.5194/amt-7-2337-2014.
[34]Sridharan S, Sandhya M, 2016.Long-term (2004 -2015) tendencies and variabilities of tropical UTLS water vapor mixing ratio and temperature observed by AURA/MLS using multivariate regression analysis[J].Journal of Atmospheric and Solar-Terrestrial Physics, 147: 156-165.DOI: 10.1016/j.jastp.2016.08.001.
[35]Tian W, Chipperfield M P, 2006.Correction to stratospheric water vapor trends in a coupled chemistry climate model [J].Geophysical Research Letters, 33(6): 272-288.DOI: 10.1029 /2005GL024675.
[36]Tian W, Tian H, Dhomse S, al et, 2011.A study of upper troposphere and lower stratosphere water vapor above the Tibetan Plateau using AIRS and MLS data[J].Atmospheric Science Letters, 12(2): 233-239, DOI: 10.1002/asl.319.
[37]Vernier J P, Thomason L W, Kar J, 2011.CALIPSO detection of an Asian tropopause aerosol layer[J].Geophysical Research Letters, 38(7): L07804.DOI: 10.1029/2010GL046614.
[38]Wei W, Zhang R, Wen M, al et, 2014.Impact of Indian summer monsoon on the South Asian high and its influence on summer rainfall over China[J].Climate Dynamics, 43(5/6): 1257-1269.DOI: 10.1007/s00382-013-1938-y.
[39]Wei W, Zhang R, Wen M, al et, 2015.Interannual variation of the South Asian high and its relation with Indian and East Asian summer monsoon rainfall[J].Journal of Climate, 28: 2623-2634.DOI: 10.1175/JCLI-D-14-004541.
[40]Wei W, Zhang R, Wen M, al et, 2017.Relationship between the Asian Westerly Jet Stream and Summer Rainfall over Central Asia and North China: Roles of the Indian Monsoon and the South Asian High[J] Journal of Climate, 30(2): 537-552.DOI: 10. 1175/JCLI-D-15- 08141.
[41]Yan R, Bian J, Fan Q, 2011.The impact of the South Asia High bimodality on the chemical composition of the upper troposphere and lower stratosphere[J].Atmospheric and Oceanic Science Letters, 4(4): 229-234.DOI.org/10.1080/16742834.2011. 11446934.
[42]Zhang P, Yang S, Kousky V, 2005.South Asian High and Asian-Pacific-American climate teleconnection[J].Advances in Atmospheric Sciences22(6): 915-923.DOI: 10.1007/bf02918690.
[43]Zou H, 1996.Seasonal variation and trends of TOMS ozone over Tibet[J].Geophysical Research Letters, 23(9): 1029-1032.DOI: 10.1029/96GL00767.
[44]陈斌, 2009.青藏高原及其周边区域夏季上对流层水汽变化和输送特征研究[D].北京: 中国气象科学研究院.
[45]董敏, 吴统文, 左群杰, 等, 2018.气候系统模式对南亚高压气候特征的模拟比较研究[J].高原气象, 37(2): 154-167.DOI: 10. 7522/j.issn.1000-0534.2017.00051.
[46]郭栋, 周秀骥, 刘煜, 等, 2012.南亚高压对青藏高原臭氧谷的动力作用[J].气象学报, 70(6): 1302-1311.
[47]何金海, 徐海明, 钟珊珊, 等, 2011.青藏高原大气热源特征及其影响和可能机制[M].北京: 气象出版社.
[48]桓玉, 李跃清, 2018.夏季东亚季风和南亚季风协同作用与我国南方夏季降水异常的关系[J].高原气象, 37(6): 1563-1577.DOI: 10.7522/j.issn.1000-0534.2018.00044.
[49]黄燕燕, 钱永甫, 2004.长江流域、 华北降水特征与南亚高压的关系分析[J].高原气象, 23(1): 70-76.
[50]梁必琪, 1995.天气学教程[M].北京: 气象出版社, 251-257.
[51]罗四维, 钱正安, 王谦谦, 1982.夏季100毫巴青藏高压与我国东部旱涝关系的天气气候研究[J].高原气象, 1(2): 1-10.
[52]舒斯, 何金海, 刘毅, 等, 2011.夏季青藏高原O<sub>3</sub>低值与南亚高压东西振荡的关系[J].气候与环境研究, 16(1): 39-46.
[53]谭晶, 杨辉, 孙淑清, 等, 2005.夏季南亚高压东西振荡特征研究[J].大气科学学报, 28(4): 452-460.
[54]陶诗言, 朱福康, 1964.夏季亚洲南部100毫巴流型的变化及其与西太平洋副热带高压进退的关系[J].气象学报, 34(4): 3-14.
[55]田红瑛, 2013.青藏高原及其邻近地区上空平流层—对流层物质交换的研究[D].兰州: 兰州大学.
[56]屠厚旺, 田红瑛, 梅成红, 等, 2018.南亚高压的东西偏向对亚洲季风区对流层顶附近水汽分布的影响[J].气候与环境研究, 23(3): 341-354.
[57]王斌, 李跃清, 2011.近10多年南亚高压活动特征及其影响的研究进展[J].高原山地气象研究, 31(2): 75-80.
[58]王秀文, 桂海林, 2006.100 hPa环流特征与2005年梅雨异常的关系[J].气象, 32(11): 88-93.
[59]魏维, 2012a.南亚高压位置的经向和纬向变化与印度季风以及中国夏季降水的关系[D].北京: 中国气象科学研究院.
[60]魏维, 张人禾, 温敏, 2012b.南亚高压的南北偏移与我国夏季降水的关系[J].应用气象学报, 23(6): 650-659.
[61]张肖剑, 靳立亚, 2018.全新世南亚高压南北移动及其与亚洲夏季风降水的关系[J].第四纪研究, 38(5): 1244-1254.
[62]张新荣, 张铁军, 刘治国, 2004.南亚高压变化与甘肃省春季和春夏降水关系初探[J].干旱气象, 22(1): 34-37.
[63]赵勇, 王前, 黄安宁, 2018.南亚高压伊朗高压型与新疆夏季降水的联系[J].高原气象, 37(3).DOI: 10.7522/j.issn.1000-0534.2017.00049.
[64]周任君, 陈月娟, 2005.青藏高原和伊朗高原上空臭氧变化特征及其与南亚高压的关系[J].中国科学技术大学学报, 35(6): 899-908.
[65]朱福康, 陆龙骅, 陈咸吉, 等, 1980.南亚高压[M].北京: 科学出版社.