Influence of LMIE Lightning Data of FY4A on Cloud InformationInitialization and Numerical Experiment

  • Shouyou HUANG ,
  • Guoqiang XU
Expand
  • <sup>1.</sup>Chinese Academy of Meteorological Sciences, Beijing 100081, China;<sup>2.</sup>National Meteorological Centre, Beijing 100081, China

Received date: 2019-08-19

  Online published: 2020-04-28

Abstract

In order to better study the application of LMIE lightning event data from the FY4 satellite (FY4A), we first introduced it into the GRAPES_Meso model cloud analysis system. We established the conversion relationship between LMIE lightning frequency and radar reflectivity, and used the nudging method to initialize the information in 3D cloud. The heavy rainfall process on 25 May 2019 is selected for a case test and half-month time serial of experiments are designed. The influence of LMIE data on radar reflectivity, cloud microphysical variables and precipitation forecast calculated by model was mainly analyzed. The results indicate that: The radar reflectivity calculated by LMIE is consistent with the observed radar reflectivity; The LMIE lightning event data can capture the heavy precipitation signal well, and can indicate the prediction of the squall line; The LMIE data can effectively increase the total amount of precipitation (cloud water, cloud ice, cloud snow, etc.) at the initial moment, of which the horizontal distribution is basically consistent with the real-time radar reflectivity and precipitation distribution, and its vertical distribution is more consistent with the observed precipitation center. By comparing the results of precipitation, it can be concluded that after adding LMIE lightning data, the missing report rate can be effectively reduced, and the model can respond to the precipitation forecast that is more closely to the observation in a short time scale, which eliminates or reduces the Spin-up phenomenon of the numerical model. Finally, the accuracy of short-term prediction is improved.

Cite this article

Shouyou HUANG , Guoqiang XU . Influence of LMIE Lightning Data of FY4A on Cloud InformationInitialization and Numerical Experiment[J]. Plateau Meteorology, 2020 , 39(2) : 378 -392 . DOI: 10.7522/j.issn.1000-0534.2019.00110

References

[1]Albers S C, McGinley J A, Birkenheuer D L, al et, 1996. The local analysis and prediction system (LAPS): Analyses of clouds, precipitation, and temperature[J]. Weather and Forecasting, 11(3): 273-287.
[2]Chang D E, Weinman J A, Morales C A, al et, 2001. The effect of spaceborne microwave and ground-based continuous lightning measurements on forecasts of the 1998 Groundhog Day storm[J]. Monthly Weather Review, 129(8): 1809-1833.
[3]Hu M, Weygandt S S, Benjamin S G, al et, 2009. Assimilation of lightning data using cloud analysis within the Rapid Refresh[C]. 89th American Meteorological Society Annual Meeting.
[4]Liu C, Cecil D J, Zipser E J, al et, 2012. Relationships between lightning flash rates and radar reflectivity vertical structures in thunderstorms over the tropics and subtropics[J]. Journal of Geophysical Research: Atmospheres, 117D06212.DOI: 10.1029/2011JD017123.
[5]Liu R X, Chen H B, Chen D H, al et, 2014. A case study of impact of FY-2C satellite data in cloud analysis to improve short-range precipitation forecast[J]. Atmospheric and Oceanic Science Letters, 7(6): 527-533.
[6]Pessi A T, 2013. Characteristics of lightning and radar reflectivity in continental and oceanic thunderstorms[C]. 93th Annual American Meteorological Society Meeting.
[7]Pessi A T, Albers S, 2014. A lightning data assimilation method for the local analysis and prediction system (laps): impact on modeling extreme events[C]. 94th Annual American Meteorological Society Meeting.
[8]Pessi A T, Businger S, 2009. The impact of lightning data assimilation on a winter storm simulation over the North Pacific Ocean[J]. Monthly Weather Review, 137(10): 3177-3195.DOI: 10.1175/2009MWR2765.1.
[9]Xue, M, Wang D H, Gao J D, al et, 2003. The advanced regional prediction system (ARPS), storm-scale numerical weather prediction and data assimilation[J]. Meteorology and Atmospheric Physics, 82(1): 139-170.
[10]Zhang J, 1999. Moisture and diabatic initialization based on radar and satellite observation[D]. School of Meteorology, University of Oklahoma, 25-183.
[11]曹冬杰, 2016. 风云四号静止卫星闪电成像仪监测原理和产品算法研究进展[J]. 气象科技进展, 6(1): 94-98.
[12]曹冬杰, 陆风, 张晓虎, 等, 2018. 风云四号卫星闪电探测产品在强对流天气监测中的应用[J]. 卫星应用, 83(11): 20-25.
[13]陈超君, 李俊, 王明欢, 2015. 2013年汛期华中区域业务数值模式降水预报检验[J]. 气象与环境学报, 31(2): 1-8.
[14]陈亚芳, 张其林, 张晓黄, 等, 2019. 风云四号闪电成像仪聚类算法的参数化方案[J]. 电瓷避雷器, 288(2): 103-108.
[15]何静, 刘舜, Dimego G, 等, 2016. 闪电观测与雷达反射率3D组网拼图比较研究[C]//郑州: 第33届中国气象学会年会.
[16]蒋宗孝, 沈永生, 蒋永成, 等, 2019. 多普勒雷达资料同化在福建地区暴雨过程中的模拟试验[J]. 高原气象, 38(3): 563-572. DOI: 10.7522/j.issn.1000-0534.2018.00155.
[17]李红莉, 崔春光, 王志斌, 等, 2009. 中尺度分析系统LAPS应用雷达资料的个例研究[J]. 高原气象, 28(6): 235-244.
[18]梁华, 鲍书龙, 陈强, 等, 2017. FY-4卫星闪电成像仪设计与实现[J]. 上海航天, 34(4): 43-51.
[19]刘瑞霞, 陈洪滨, 师春香, 等, 2011. 多源观测数据在LAPS三维云量场分析中的应用[J]. 应用气象学报, 22(1): 123-128.
[20]屈右铭, 陆维松, 蔡荣辉, 等, 2010. GRAPES-Meso云分析系统的设计与试验[J]. 气象, 36(10): 37-45.
[21]孙婵, 2018. 闪电资料在GRAPES云分析中的应用研究[D]. 北京: 中国气象科学研究院, 18-50.
[22]孙玉婷, 赖安伟, 王明欢, 等, 2019. 基于地形差异的闪电频数与雷达回波关系分析[J]. 高原气象, 38(6): 1320-1331. DOI: 10.7522/j.issn.1000-0534.2018.00146
[23]王晓峰, 王平, 张蕾, 等, 2017. 多源观测在快速更新同化系统中的敏感性试验[J]. 高原气象, 36(1): 148-161. DOI: 10.7522/j.issn.1000-0534.2016.00018.
[24]王莹, 2017. 闪电资料同化对降水模拟改进的研究[D]. 兰州: 兰州大学, 42-77.
[25]王莹, 杨毅, 邱晓滨, 2015. 集合均方根滤波同化地闪资料的试验研究[J]. 干旱气象, 33(5): 761-768.
[26]杨丽丽, 杨毅, 张廷龙, 等, 2015. 基于双多普勒雷达及闪电资料分析一次强降水过程[J]. 高原气象, 34(2): 546-555. DOI: 10.7522/j.issn.1000-0534.2014.00006.
[27]张兰, 徐道生, 胡东明, 等, 2019. 雷达反演资料的Nudging同化对华南暴雨过程短临预报的影响[J]. 高原气象, 38(6): 1208-1220. DOI: 10.7522/j.issn.1000-0534.2018.00147.
[28]朱立娟, 龚建东, 黄丽萍, 等, 2017. GRAPES三维云初始场形成及在短临预报中的应用[J]. 应用气象学报, 28(1): 38-51.
Outlines

/