Effects of Nitrogen Oxide Emissions over East Asia on Ozone and Temperature in UTLS Region of the Northern Hemisphere

  • Na XIAO ,
  • Jiankai ZHANG ,
  • Wenshou TIAN ,
  • Shiyan ZHANG ,
  • Ruhua ZHANG ,
  • Ruanruan HAN
Expand
  • Key Laboratory of Semi-Arid Climate Change, Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, Gansu, China

Received date: 2019-01-22

  Online published: 2020-04-28

Abstract

Using the ozone Monitoring Instrument (OMI) satellite data and Whole Atmosphere Community Climate Model (WACCM3), the impact of increasing surface emissions of nitrogen oxide (NOx) in East Asia on ozone and temperature in the upper troposphere and lower stratosphere (UTLS) is investigated.Surface NOx emissions in East Asia can be transported to the tropics and East Asian UTLS region during summer and autumn.In summer, the south Asia anticyclone can transport the NOx in the East Asian UTLS region to the low latitudes.In the UTLS regions, photochemical reactions in the low latitudes are enhanced with the increase of surface NOxemissions in East Asia, resulting in an increasing in the low-latitude ozone concentration which leads to warming in the region in winter; while an intensified cyclic depleting ozone in the middle latitudes resulting in the mid-latitude ozone concentration decreasing which leads to cooling in the region in winter.The meridional gradient of temperature between low latitude and mid-high latitudes in the UTLS region weakens leading to a weakening subtropical jet.Meanwhile, the enhanced meridional gradient of temperature between polar region and middle and high latitudes leads to an enhanced mid-high latitudes westerly jet.The planetary waves entering the stratosphere are inhibited, which is mainly associated with the obviously weakening wave 1 and wave 2 at high latitude.

Cite this article

Na XIAO , Jiankai ZHANG , Wenshou TIAN , Shiyan ZHANG , Ruhua ZHANG , Ruanruan HAN . Effects of Nitrogen Oxide Emissions over East Asia on Ozone and Temperature in UTLS Region of the Northern Hemisphere[J]. Plateau Meteorology, 2020 , 39(2) : 402 -415 . DOI: 10.7522/j.issn.1000-0534.2019.00043

References

[1]Atkinson R, 1998.Atmospheric chemistry of VOCs and NO<sub>x</sub>[J].Atmospheric Environment, 34 (2000): 2063-2101.DOI: 10.1016/s1352-2310(99)00460-4.
[2]Chameides W, Walker J C G, 1973.A Photochemical theoryof Tropospheric Ozone[J].Journal of Geophysical Research, 78(36): 8751-8760.DOI: 10.1029/JC078i036p08751.
[3]Chen B, Xu X D, Yang S, al et, 2012.Climatological perspectivesof air transport from atmospheric boundary layer totropopause layer over Asian monsoon regions during boreal summerinferred from Lagrangian approach[J].Atmospheric Chemistry and Physics, 12(13): 5827-5839.DOI: 10.5194/acp-12-5827-2012.
[4]Crutzen P, 1973.A discussion of the chemistry of some minor constituents in the stratosphere and troposphere[J].Pure and Applied Geophysics, 106(1): 1385-1399.DOI: 10.1007/bf00881092.
[5]Fadnavis S, Schultz M G, Semeniuk K, al et, 2014.Trends in peroxyacetyl nitrate (PAN) in the upper troposphere and lower stratosphere over southern Asia during the summer monsoon season: regional impacts[J].Atmospheric Chemistry and Physic, 14(23): 12725-12743.DOI: 10.5194/acp-14-12725-2014.
[6]Farman J C, Gardiner B G, Shanklin J D, 1985.Large losses of total ozone in Antarctica reveal seasonal ClO<sub>x</sub>/NO<sub>x</sub> interaction[J].Nature, 315(16): 207-210.DOI: 10.1038/315207a0.
[7]Fu R, Hu Y, Wright J S, al et, 2006.Short circuit of water vaporand polluted air to the global stratosphere by convectivetransport over the Tibetan Plateau[J].Proceedings of the National Academy of Sciences, 103 (15) : 5664-5669.DOI: www.pnas.org/cgi/doi/10.1073/pnas.0601584103.
[8]Garcia R R, Marsh D R, Kinnison D E, al et, 2007.Simulation of secular trends in the middle atmosphere, 1950 -2003[J].Journal of Geophysical Research: Atmospheres, 112: D09301.DOI: 10.1029/2006JD007485.
[9]Guo D, Wang P, Zhou X, al et, 2012.Dynamic effects of the South Asian high on the ozone valley over the Tibetan Plateau[J].Acta Meteorologica Sinica, 26(2): 216-228.
[10]Guo D, Su Y, Shi C, al et, 2015.Double core of ozone valley over the Tibetan Plateau and its possible mechanisms[J].Journal of Atmospheric and Solar-Terrestrial Physics, 130: 127-131.
[11]Horowitz L W, Walters S, Mauzerall D L, al et, 2003.A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2[J].Journal of Geophysical Research: Atmospheres, 108D24): 4784.DOI: 10.1029/2002JD002853.
[12]Hsu J, Prather MJ, Wild O, 2005.Diagnosing the stratospheretotroposphere flux of ozone in a chemistry transport model[J].Journal of Geophysical Research: Atmospheres, 110: D19305.DOI: 10. 1029/2005JD006045.
[13]Huang J P, Zhou C H, Lee X, al et, 2013.The effects of rapidurbanization on the levels in tropospheric nitrogen dioxide andozone over East China [J].Atmospheric Environment, 77: 558-567.DOI: 10.1016/j.atmosenv.2013.05.030.
[14]Li Q, Jacob D J, Logan J A, al et, 2001.A tropospheric ozone maximum over the Middle East[J].Geophysical Research Letters, 28(17): 3235-3238.DOI: 10.1029/2001GL013134.
[15]Lin M, Fiore A M, Horowitz L W, al et, 2012.Transport of Asian ozone pollution into surface air over the western United States in spring[J].Journal of Geophysical Research: Atmospheres, 117(D21): D00V07.DOI: 10.1029/2011JD016961.
[16]Lin M, Zhang Z, Su L, 2016.Resolving the impact of stratosphere-to-troposphere transport on the sulfur cycle and surface ozone over the Tibetan Plateau using a cosmogenic 35S tracer[J].Journal of Geophysical Research-Atmospheres, 121 (1): 439-456.DOI: 10.1002/2015JD023801.
[17]Longstreth J D, de Gruijl F R, Kripke M L, al et, 1995.Effects of increased solar ultraviolet radiation on human health[J].Ambio-Journal of Human Environment Research and Management, 24(3): 153-165.
[18]Ohara T, Akimoto H, Kurokawa J I, al et, 2007.An Asian emission inventory of anthropogenic emission sources for the period 1980–2020[J].Atmospheric Chemistry and Physics, 7(16): 4419-4444.DOI: 10.5194/acpd-7-6843-2007.
[19]Olsen S C, Brasseur G P, Wuebbles D J, al et, 2013.Comparison of model estimates of the effects of aviation emissions on atmospheric ozone and methane[J].Geophysical Research Letters, 40(22): 6004-6009.DOI: 10.1002/2013gl057660.
[20]Park M, Randel W J, Emmons L K, al et, 2009.Transport pathways of carbon monoxide in the Asian summer monsoon diagnosed from Model of Ozone and Related Tracers (MOZART)[J].Journal of Geophysical Research: Atmospheres, 114: D08303.DOI: 10.1029/2008JD010621.
[21]Randel W J, Park M, Emmons L, al et, 2010.Asian monsoon transport of pollution to the stratosphere[J].Science, 328(5978): 611-613.DOI: 10.1029/2008JD010621.
[22]Ratnam M V, Sunilkumar S V, Parameswaran K, al et, 2014.Tropical tropopause dynamics (TTD) campaigns over Indian region: An overview[J].Journal of Atmospheric and Solar-Terrestrial Physics, 121: 229-239.DOI: 10.1016/j.jastp.2014.05.007.
[23]Ravishankara A R, 2012.Water Vapor in the Lower Stratosphere[J].Science, 337 (6096) : 809-810.DOI: 10.1126/science.1227004.
[24]Rayner N A A, Parker D E, Horton E B, al et, 2003.Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J].Journal of Geophysical Research: Atmospheres, 108D14): 4407.DOI: 10.1029/2002jd002670.
[25]Richter A, Burrows J P, Nü? H, al et, 2005.Increase in tropospheric nitrogen dioxide over China observed from space[J].Nature, 437(7055): 129.DOI: 10.1038/nature04092.
[26]Ridley B A, Madronich S, Chatfield R B, al et, 1992.Measurements and model simulations of the photostationary state during the Mauna Loa Observatory Photochemistry Experiment: Implications for radical concentrations and ozone production and loss rates[J].Journal of Geophysical Research: Atmospheres, 97(D10): 10375-10388.DOI: 10.1029/91JD02287.
[27]Schneider P, 2012.A global single‐sensor analysis of 2002–2011 tropospheric nitrogen dioxide trends observed from space[J].Journal of Geophysical Research: Atmospheres, 117: D16309.DOI: 10.1029/2012JD017571.
[28]Sillman S, He D, Cardelino C, al et, 1997.The use of photochemical indicators to evaluate ozone-NO<sub>x</sub>-hydrocarbon sensitivity: Case studies from Atlanta, New York, and Los Angeles[J].Journal of the Air & Waste Management Association, 47(10): 1030-1040.DOI: 10.1080/10962247.1997.11877500.
[29]Skowron A, Lee D S, De Leon R R, 2013.The assessment of the impact of aviation NO<sub>x</sub> on ozone and other radiative forcing responses-The importance of representing cruise altitudes accurately[J].Atmospheric Environment, 74: 159-168.DOI: 10.1016/j.atmosenv.2013.03.034.
[30]Teitelbaum H, Moustaoui M, Basdevant C, al et, 2000.An alternative mechanism explaining the hygropause formation in tropical regions[J].Geophysical Research Letters, 27(2): 221-224.DOI: 10.1029/1999gl010874.
[31]Vogel B, Günther G, Muller R, al et, 2016.Long-range transport pathways of tropospheric source gases originating in Asia into the northern lower stratosphere during the Asian monsoon season 2012[J].Atmospheric Chemistry & Physics, 16(23): 15301–15325, .DOI: 10.5194/acp-16-15301-2016.
[32]Wuebbles D J, Hayhoe K, 2002.Atmospheric methane and global change[J].Earth-Science Reviews, 57(3/4): 177-210.DOI: 10.1016/S0012-8252(01)00062-9.
[33]Zhang J, Tian W, Xie F, al et, 2014.Climate warming and decreasing total column ozone over the Tibetan Plateau during winter and spring[J].Tellus B: Chemical and Physical Meteorology, 66(1): 23415.DOI: 10.3402/tellusb.v66.23415.
[34]卞建春, 2009.上对流层/下平流层大气垂直结构研究进展[J].地球科学进展, 24(3): 262-271.DOI : 10.3321/j.issn: 1001-8166. 2009.03.005.
[35]卞建春, 严仁嫦, 陈洪滨, 2011.亚洲夏季风是低层污染物进入平流层的重要途径[J].大气科学, 35(5) : 897-902.DOI: 10. 3878/j.issn.1006-9895.2011.05.09.
[36]陈斌, 施晓晖, 徐祥德, 等, 2011.利用卫星大气成分资料分析夏季亚洲季风区平流层-对流层输送特征[J].高原气象, 30(1): 65-73.
[37]陈洪滨, 卞建春, 吕达仁, 2006.上对流层下平流层交换过程研究的进展与展望[J].大气科学, 30(5): 8130-821.DOI: 10.3878/j.issn.1006-9895.2006.05.10.
[38]丛春华, 李维亮, 周秀骥, 2001.青藏高原及其邻近地区上空平流层对流层之间大气的质量交换[J].科学通报, 46 (22) : 1914-1918.DOI: 10.3321/j.issn: 0023-074X.2001.22.017.
[39]高晋徽, 朱彬, 王言哲, 2015.2005~2013 年中国地区对流层二氧化氮分布及变化趋势[J].中国环境科学, 35(8) : 2307-2318.DOI: 10.3969/j.issn.1000-6923.2015.08.008.
[40]胡永云, 夏炎, 高梅, 等, 2008.21世纪平流层温度变化和臭氧恢复[J].气象学报, 66(6): 880-891.DOI: 10.3321/j.issn: 0577-6619.2008.06.004.
[41]胡永云, 丁峰, 夏炎, 2009.全球变化条件下的平流层大气长期变化趋势[J].地球科学进展, 24(3): 242-251.DOI: 10.3321/j.issn: 1001-8166.2009.03.003.
[42]贾龙, 葛茂发, 徐永福, 等, 2006.大气臭氧化学研究进展[J].化学进展, 18 (11): 1565-1573.DOI: 10.3321/j.issn: 1005-281X. 2006.11.019.
[43]李亚飞, 胡景高, 任荣彩, 2017.2009 年冬季北半球平流层爆发性增温的个例分析[J].高原气象, 36(6) : 1576-1586.DOI: 10.7522 /j.issn.1000-0534.2017.00003.
[44]秦瑜, 赵春生, 2003.大气化学基础[M].北京: 气象出版社, 46-49.
[45]盛裴轩, 毛节泰, 李建国, 等, 2003.大气物理学 [M].北京: 北京大学出版社, 11-12.
[46]田红瑛, 田文寿, 雒佳丽, 等, 2011.青藏高原地区上对流层-下平流层区域水汽分布和变化特征 [J].高原气象, 33(1): 1-13.
[47]田文寿, 田红瑛, 商林, 等, 2011.热带平流层与对流层之间相互作用的研究进展[J].热带气象学报, 27(5): 765-774.DOI: 10.7522/j.issn.1000-0534.2013.00074.
[48]王前, 赵勇, 陈飞, 等, 2017.南亚高压的多模态特征及其与新疆夏季降水的联系[J].高原气象, 36(5) : 1209-1220.DOI: 10.7522 /j.issn.1000-0534.2016.00123.
[49]吴学珂, 郄秀书, 袁铁, 2013.亚洲季风区深对流系统的区域分布和日变化特征 [J].中国科学: 地球科学, 43(4): 556-569.DOI: 10.1007/s11430-012-4551-8.
[50]谢飞, 田文寿, 张健恺, 等, 2013.未来甲烷排放增加对平流层水汽和全球臭氧的影响[J].气象学报, 71(3): 555-567.DOI: 10.11676/qxxb2013.049.
[51]杨冰韵, 吴晓京, 郭徵, 2017.基于CloudSat资料的中国地区深对流云物理特征研究[J].高原气象, 36(6) : 1655-1664.DOI: 10.7522 /j.issn.1000-0534.2017.00006.
[52]杨琴, 田文寿, 隆霄, 2014.青藏高原沙尘示踪物从对流层向平流层传输的数值模拟 [J].高原气象, 33(4): 887-899.DOI: 10.7522/j.issn.1000-0534.2013.00095.
Outlines

/