As the Asian Water Tower, it’s of great significance to study the precipitation sources of the Qinghai-Tibetan Plateau for water security and water resources utilization in China.In order to study the characteristics of summer moisture transport in the middle of the plateau and understand the regional water cycle.In this paper, the daily data set of China's surface climate data and the HYSPLIT Lagrangian model driven by GDAS data are used to analyze the moisture transport track and the track of different grades of precipitation in summer of 2014 in Naqu area.Using the cluster analysis to get the moisture passages and the paticle tracking analysis to calculate the moisture contribution.The results show that, There are obvious monthly and ten day changes in the moisture transport trajectories in summer, which is mainly caused by the northward advance of summer monsoon.The Indian Ocean, the Arabian Sea, the Bay of Bengal, the Atlantic Ocean and Central Asia are the five main moisture transport passages.There are southern and western paths for light rain and moderate rain, but only southern paths for heavy rain.The moisture transport in the ocean plays a decisive role in the precipitation level.The area with high moisture source one day ago is the Yarlung Zangbo River Basin.The area with high moisture source three days ago is the border between India and Badan.The moisture source of heavy rain is more concentrated than that of light rain and moderate rain.There is a good correspondence between the region of moisture contribution concentration and the end point of moiture trace.In a nutshell, the moisture sources of different grades of precipitation are different.
Yuting ZENG
,
Yu ZHANG
,
Ke ZHOU
,
Yuqi YAO
,
Linfeng YANG
. Analysis on the Source and Transport Characteristics of Moisture in Naqu of the Qinghai-Tibetan Plateau in Summer[J]. Plateau Meteorology, 2020
, 39(3)
: 467
-476
.
DOI: 10.7522/j.issn.1000-0534.2019.00120.
[1]Chen B, Xu X D, Yang S, al et, 2012.On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau[J].Theoretical and Applied Climatology, 110(3): 423-435.DOI 10.1007/s00704-012-0641-y.
[2]Draxler R R, Hess G D, 1997.Description of the HYSPLIT_4 modeling system[C].NOAA Technical Memorandum ERL ARL-224.
[3]Gui K, Che H Z, Chen Q L, al et, 2017.Evaluation of radiosonde, MODIS-NIR-Clear, and AERONET precipitable water vapor using IGS ground-based GPS measurements over China[J].Atmospheric Research, 197(15): 461-473.DOI: 10.1016/j.atmosres. 2017.07.021.
[4]Huang Y J, Cui X P, 2015.Moisture sources of torrential rainfall events in the Sichuan Basin of China during summers of 2009–13[J].Journal of Hydrometeorology, 16(4): 1906-1917.DOI: 10.1175/JHM-D-14-0220.1.
[5]James P, Stohl A, Spichtinger N, al et, 2004.Climatological aspects of the extreme European rainfall of August 2002 and a trajectory method for estimating the associated evaporative source regions[J].Natural Hazards and Earth System Science, 4(5): 733-746.
[6]陈斌, 徐祥德, 杨帅, 等, 2012.夏季青藏高原地区近地层水汽进入平流层的特征分析[J].地球物理学报, 55(2): 406-414.DOI: 10.6038/j.issn.0001-5733.2012.02.005.
[7]江吉喜, 范梅珠, 2002.青藏高原夏季TBB场与水汽分布关系的初步研究[J].高原气象, 21(1): 20-24.
[8]江志红, 任伟, 刘征宇, 等, 2013.基于拉格朗日方法的江淮梅雨水汽输送特征分析[J].气象学报, 71(2): 295-304.DOI: 10.11676/qxxb2013.017.
[9]梁宏, 刘晶淼, 李世奎, 2006.青藏高原及周边地区大气水汽资源分布和季节变化特征分析[J].自然资源学报, 21(4): 526-534.DOI: 10.3321/j.issn: 1000-3037.2006.04.004.
[10]李江萍, 杜亮亮, 张宇, 等, 2012.玛曲地区夏季强降水的环流分型及水汽轨迹分析[J].高原气象, 31(6): 1582-1590.
[11]李生辰, 李栋梁, 赵平, 等, 2009.青藏高原“三江源地区”雨季水汽输送特征[J].气象学报, 67(4): 591-598.
[12]洛桑卓玛, 拉巴, 巴丹卓玛, 2014.西藏那曲地区40多年来降水趋势变化气候分析[J].山地学报, 32(3): 380-384.DOI: 10.3969/j.issn.1008-2786.2014.03.017.
[13]马京津, 高晓清, 2006.华北地区夏季平均水汽输送通量和轨迹的分析[J].高原气象, 25(5): 893-899.
[14]全思航, 朱克云, 任景轩, 等, 2019.1979~2015年青藏高原低涡降水特征分析[J].气候与环境研究, 24(1): 105-115.DOI: 10.3878/j.issn.1006-9585.2018.17116.
[15]孙力, 马梁臣, 沈柏竹, 等, 2016.2010年7~8月东北地区暴雨过程的水汽输送特征分析[J].大气科学, 40(3): 630-646.DOI: 10.3878/j.issn.1006-9895.1506.15101.
[16]宋连春, 王遵娅, 邵勰, 等, 2015.气候系统监测诊断年报2014[Z].北京: 气象出版社.
[17]孙颖姝, 王咏青, 沈新勇, 等, 2018.一次“大气河”背景下东北冷涡暴雨的诊断分析[J].高原气象, 37(4): 970-980.DOI: 10.7522/j.issn.1000-0534.2018.00005.
[18]施小英, 施晓晖, 2008.夏季青藏高原东南部水汽收支气候特征及其影响[J].应用气象学报, 19(1): 41-46.DOI: 10.3969/j.issn.1001-7313.2008.01.006.
[19]吴国雄, 毛江玉, 段安民, 等, 2004.青藏高原影响亚洲夏季气候研究的最新进展[J].气象学报, 62(5): 528-540.DOI: 10.3321/j.issn: 0577-6619.2004.05.002.
[20]王佳津, 王春学, 陈朝平, 等, 2015.基于HYSPLIT4的一次四川盆地夏季暴雨水汽路径和源地分析[J].气象, 41(11): 1315-1327.DOI: 10.7519/j.issn.1000-0526.2015.11.002.
[21]王霄, 巩远发, 岑思弦, 2009.夏半年青藏高原"湿池"的水汽分布及水汽输送特征[J].地理学报, 64(5): 601-608.DOI: 10.3321/j.issn: 0375-5444.2009.05.009.
[22]徐祥德, 赵天良, Lu C G, 等, 2014.青藏高原大气水分循环特征[J].气象学报, 72(6): 1079-1095.DOI: 10.11676/qxxb2014.091.
[23]杨柳, 赵俊虎, 封国林, 2018.中国东部季风区夏季四类雨型的水汽输送特征及差异[J].大气科学, 42(1): 81-95.DOI: 10. 3878/j.issn.1006-9895.1706.16273.
[24]杨梅学, 姚檀栋, 田立德, 等, 2004.藏北高原夏季降水的水汽来源分析[J].地理科学, 24(4): 426-431.DOI: 10.3969/j.issn. 1000-0690.2004.04.007.
[25]朱丽, 刘蓉, 王欣, 等, 2019.基于FLEXPART模式对黄河源区盛夏降水异常的水汽源地及输送特征研究[J].高原气象, 38(3): 484-496.DOI: 10.7522/j.issn.1000-0534.2019.00015.
[26]张人禾, 2001.来自印度季风区的水汽输送与东亚上空水汽输送和中国夏季降水的关系[J].大气科学进展(英文版), 18(5): 1005-1017.
[27]周秀骥, 赵平, 陈军明, 等, 2009.青藏高原热力作用对北半球气候影响的研究[J].中国科学(地球科学), 39(11): 1473-1486.DOI: 10.1007/s11430-009-0194-9.