Applications and Evaluations of Dynamic Root Scheme with Carbon-Water-Nitrogen Interactions in Land Surface Model SSiB4

  • Yifan ZHANG ,
  • Xin MIAO ,
  • Weidong GUO
Expand
  • School of Atmospheric Science, Nanjing University, Nanjing 210023, Jiangsu, China

Received date: 2019-12-24

  Online published: 2020-06-28

Abstract

Root system is an important part of vegetation. The dynamic changes of root system can change soil moisture by adjusting the amount of water absorbed from root system, and then affect the biophysical processes such as soil evaporation and the biochemical processes such as transpiration and photosynthesis of vegetation. Eventually, the material cycle and the hydrothermal cycle of the ecosystem are changed by the dynamic changes of root system accordingly. In this study, soil water stress and soil nutrient (nitrogen) stress were considered to simulate the dynamic distribution of root carbon in different soil layers, and the dynamic change of root system was characterized by the ratio of carbon content in root system. Based on SSiB4 model, the single-point simulation experiment was carried out at BRSa3 site in Amazon region and CN-Qia site in Qianyanzhou, China to study the effects of dynamic root system scheme on the simulation of soil moisture and land-atmosphere flux. The results showed that the dynamic distribution of root enables more soil water to be absorbed, which improved the simulation effect of shallow soil moisture, and then improved the simulation accuracy of carbon dioxide flux, sensible heat flux and latent heat flux. At the BRSa3 and CN-Qia sites, the correlation coefficients between the observed and simulated daily mean values of soil moisture were increased by 0.02 and 0.04, respectively, and the correlation coefficients of carbon dioxide were increased by 0.76 and 0.13, respectively, which all passed the 99% significance test. The simulation of carbon absorption capacity of BRSa3 site in dry season and CN-Qia site in summer has been improved, and the absolute deviation was improved by 33%, 106%, respectively. The correlation coefficients between observed and simulated daily mean carbon dioxide flux were increased by 0.17 and 0.26, which passed the 99% significance test. In general, all the variables were closer to the observed values after considering the dynamic root system scheme during the simulated time, and the improvements of soil moisture and carbon dioxide flux were more evident than that of sensible heat flux and latent heat flux. The indirect effect of soil moisture on sensible heat flux and latent heat flux through physical processes of soil may be the main reason for the differences of the results. The improvements were more evident at BRSa3 site. The root depth and structure of different vegetation cover types may be the main reason for the differences of the results.

Cite this article

Yifan ZHANG , Xin MIAO , Weidong GUO . Applications and Evaluations of Dynamic Root Scheme with Carbon-Water-Nitrogen Interactions in Land Surface Model SSiB4[J]. Plateau Meteorology, 2020 , 39(3) : 511 -522 . DOI: 10.7522/j.issn.1000-0534.2020.00005.

References

[1]Arora V, Boer G, 2003.A representation of variable root distribution in dynamic vegetation models[J].Earth Interactions, 7(6): 141-144.DOI: 10.1175/1087-3562(2003)0072.0.CO; 2.
[2]Avissar R, Silva D P L, Silva D M A F, al et, 2002.The large-scale biosphere-atmosphere experiment in Amazonia (LBA): Insights and future research needs[J].Journal of Geophysical Research: Atmospheres, 107D20: 8086.DOI: 10.1029/2002jd002704.
[3]Betts R, 1997.Contrasting physiological and structural vegetation feedbacks in climate change simulations[J].Nature, 387(6635): 796-799.DOI: 10.1038/42924.
[4]Bonan G B, 1996.A land surface model (LSM version1.0 for ecological, hydrological, and atmospheric studies: Technical description and user's guide[M].NCAR Technical Note NCAR/TN-417+STR.National Center for Atmospheric Research, Boulder, Colorado.DOI: 10.5065/D6DF6P5X.
[5]Copley J, 2000.Ecology goes underground[J].Nature, 406(6795): 452-454.DOI: 10.1038/35020131.
[6]Cox P M, 2001.Description of the “TRIFFID” dynamic global vegetation model[R].Hadley Centre technical note 24, Hadley Centre, Met Office.
[7]Dickinson R E, Henderson S A, Kennedy P J, 1993.Biosphere-Atmosphere Transfer Scheme (BATS) version1.0 as coupled to the NCAR community climate model[M].NCAR Tech.Note NCAR/TN-387+STR.National Center for Atmospheric Research, Boulder, Colorado.DOI: 10.5065/D67W6959.
[8]Gale M R, Grigal D F, 1987.Vertical root distribution of northern tree species in relation to successional status[J].Canadian Journal of Forest Research, 17(8): 829-834.DOI: 10.1139/x87-131.
[9]Hatzis J J, 2010.The development of a dynamic root distribution for the community land model with carbon-nitrogen interactions[D].DeKalb: North Illinois University, 1-184.
[10]Homaee M, Feddes R A, Dirksen C, 2002.Simulation of root water uptake: III.Non-uniform transient combined salinity and water stress[J].Agricultural Water Management, 57(2): 127-144.DOI: 10.1016/S0378-3774(02)00073-2.
[11]Jackson R B, Mooney H A, Schulze E D, 1997.A global budget for fine root biomass, surface area, and nutrient contents[J].Proceedings of the National Academy of Sciences, 94(14): 7362-7366.DOI: 10.1073/pnas.94.14.7362.
[12]Kleidon A, Heimann M, 1998.A method of determining rooting depth from a terrestrial biosphere model and its impacts on the global water and carbon cycle[J].Global Change Biology, 4(3): 275-286.DOI: 10.1046/j.1365-2486.1998.00152.x.
[13]Laio F, D’Odorico P, Ridolfi L, 2006.Ananalytical model to relate the vertical root distribution to climate and soil properties[J].Geophysical Research Letters, 33: L18401.DOI: 10.1029/2006GL027331.
[14]McGuire A D, Melillo J M, Kicklighter D W, al et, 1997.Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: Sensitivity to changes in vegetation nitrogen concentration[J].Global Biogeochemical Cycles, 11: 173-189.DOI: 10.1029/97gb00059.
[15]Mitchell K, 2005.The community NOAH Land-Surface Model (LSM) user’s guide[R].Public Release Version 2.7.1; National Weather Service, National Center for Environmental Prediction: Camp Springs, MD, USA.
[16]Mokany K, Raison R J, Prokushkin A S, 2005.Critical analysis of root: Shoot ratios in terrestrial biomes[J].Global Change Biology, 12(1): 84-96.DOI: 10.1111/j.1365-2486.2005.001043.x.
[17]Oleson K W, Lawrence D M, Bonan G B, al et, 2010.Technical Description of version4.0 of the Community Land Model (CLM)[M].NCAR Technical Note NCAR/TN-478+STR, National Center for Atmospheric Research, Boulder, CO, 257.
[18]Oleson K W, Lawrence D M, Bonan G B, al et, 2013.Technical Description of version4.5 of the Community Land Model (CLM)[M].Ncar Technical Note NCAR/TN-503+STR, National Center for Atmospheric Research, Boulder, CO, 422.DOI: 10. 5065/D6RR1W7M.
[19]Quijano J C, 2012.Competitive and mutualistic dependencies in multispecies vegetation dynamics enabled by hydraulic redistribution[J].Water Resources Research, 48: W05518.DOI: 10.1029/2011WR011416.
[20]Schneider C L, Attinger S, Delfs J O, al et, 2010.Implementing small scale processes at the soil-plant interface-the role of root architectures for calculating root water uptake profiles[J].Hydrology and Earth System Sciences, 14(2): 279-289.DOI: 10.5194/hess-14-279-2010.
[21]Sellers P J, Mintz Y, Sud Y C, al et, 1986.A Simple Biosphere Model (SIB) for use within general circulation models[J].Journal of the Atmospheric Sciences, 43(6): 505-531.DOI: 10.1175/1520-0469(1986)043<0505: asbmfu>2.0.co; 2.
[22]Shangguan W, Dai Y J, Duan Q Y, al et, 2014.A global soil data set for earth system modeling[J].Journal of Advances in Modeling Earth Systems, 6: 249-263.DOI: 10.1002/2013MS000293.
[23]Xue Y K, Sellers P J, Kinter J L, al et, 1991.A simplified biosphere model for global climate studies[J].Journal of Climate, 4: 345-364.
[24]Zeng X B, 2001.Global vegetation root distribution for land modeling[J].Journal of Hydrometeorology, 2(5): 525-530.DOI: 10. 1175/1525-7541(2001)002<0525: GVRDFL>2.0.CO; 2.
[25]Zhan X W, Xue Y K, Collatz G J, 2003.An analytical approach for estimating CO<sub>2</sub> and heat fluxes over the Amazonian region[J].Ecological Modeling, 162(1/2): 97-117.DOI: 10.1016/s0304-3800(02)00405-2.
[26]Zhang Z Q, Xue Y K, Glen M D, al et, 2015.Investigation of North American vegetation variability under recent climate: A study using the SSiB4/TRIFFID biophysical/dynamic vegetation model[J].Journal of Geophysical Research: Atmospheres, 120(4): 1300-1321.DOI: 10.1002/2014jd021963.
[27]才奎冶, 刘晶淼, 张正秋, 等, 2015.陆面模式中根系参数的改进及其对模拟结果的影响[J].应用生态学报, 26(10): 3111-3118.DOI: 10.13287/j.1001-9332.20150921.006.
[28]陈海山, 孙照渤, 2002.陆气相互作用及陆面模式的研究进展[J].南京气象学院学报, 25(2): 277-288.DOI: 10.3969/j.issn. 1674-7097.2002.02.021.
[29]陈银萍, 牛亚毅, 李伟, 等, 2019.科尔沁沙地自然恢复沙质草地生态系统碳通量特征[J].高原气象, 38(3): 650-659.DOI: 10. 7522/j.issn.1000-0534.2018.00133.
[30]戴永久, 曾庆存, 1996.陆面过程研究[J].水科学进展, 7增刊): 40-53.DOI: 10.14042/j.cnki.32.1309.1996.s1.007.
[31]郭京衡, 李尝君, 曾凡江, 等, 2016.2种荒漠植物根系生物量分布与土壤水分、 养分的关系[J].干旱区研究, 33(1): 169-174.DOI: 10.1386/j.azr.2016.01.21.
[32]黄建辉, 韩兴国, 陈灵芝, 1996.森林生态系统根系生物量研究进展[J].生态学报, 19(2): 270-277.DOI: 10.3321/j.issn: 1000-0933.1999.02.021.
[33]吉喜斌, 康尔泗, 陈仁升, 等, 2006.植物根系吸水模型研究进展[J].西北植物学报, 26(3): 214-1086.DOI: 10.11686/cyxb2016146.
[34]刘允芬, 宋霞, 孙晓敏, 等, 2004.千烟洲人工针叶林CO<sub>2</sub>通量季节变化及其环境因子的影响[J].中国科学(地球科学), (A02): 109-117.
[35]李凯, 高艳红, Chen F, 等, 2015.植被根系对青藏高原中部土壤水热过程影响的模拟[J].高原气象, 34(3): 642-652.DOI: 10.7522/j.issn.1000-0534.2015.00035.
[36]刘双, 谢正辉, 高骏强, 等, 2018.高寒生态脆弱区冻土碳水循环对气候变化的响应——以甘南州为例[J].高原气象, 37(5): 1177-1187.DOI: 10.7522/j.issn.1000-0534.2018.00016.
[37]马英赛, 孟宪红, 韩博, 等, 2019.黄土高原土壤湿度对地表能量和大气边界层影响的观测研究[J].高原气象, 38(4): 705-715.DOI: 10.7522/j.issn.1000-0534.2019.00036.
[38]牛国跃, 洪钟祥, 孙菽芬, 1997.陆面过程研究的现状与发展趋势[J].地球科学进展, 12(1): 20-25.
[39]孙菽芬, 2005.陆面过程的物理、 生化机理和参数化模型[M].北京: 气象出版社, 1-370.
[40]王媛媛, 2016.考虑植被根系动态变化的陆面过程模式发展及应用[D].北京: 中国科学院大学, 1-110.
[41]王玉阳, 陈亚鹏, 2017.植物根系吸水模型研究进展[J].草业学报, 26(3): 214-225.DOI: 10.11686/cyxb2016146.
[42]阳园燕, 郭安红, 安顺清, 等, 2004.土壤-植物-大气连续体(SPAC)系统中植物根系吸水模型研究进展[J].气象科技, 32(5): 316-321.DOI: 10.3969/j.issn.1671-6345.2004.05.003.
[43]张经天, 席海洋, 王春林, 等, 2019.基于地下水位变化的荒漠河岸林蒸散估算[J].高原气象, 38(1): 179-186.DOI: 10.7522/j.issn.1000-0534.2018.00071.
[44]朱晗晖, 张宇, 沈晓燕, 等, 2018.农牧交错带植被演变对区域气候影响的模拟[J].高原气象, 37(3): 721-733.DOI: 10.7522/j.issn.1000-0534.2018.00050.
Outlines

/