On January 22, 2018, an inverted trough was passing through the urban area in Xingtai where stratiform clouds were developed in low altitude.A particle measuring system mounted on King Air was used to complete and track the seeding operation.By comparing the microphysical variation of different-scale cloud particles before and after the seeding with satellite results, the artificial seeding was found successfully effective.After the seeding, the result response of target cloud is the key for the chain of evidence between precipitation augmentation and cloud seeding.When cloud condensation nuclei were rather uniform and the cloud was considered as one layer that a shallow cloud layer was formed, the cloud particles would grow homogeneously into supercooled water droplets with diameter between 4~6 μm, which would further form into the water cloud.The maximum liquid content was 0.2 g·m-2.After the seeding, artificial ice nucleus consumed abundant supercooled water and further grew into ice crystals and ice crystal aggregations.The cloud particle concentration dropped from 200 cm-3 into 15 cm-3 because of the seeding, while for the same reason, the concentration of 100~1000 μm ice and snow crystals as well as the concentration of precipitation particles over 1000 μm increased to 150 L-1 and 70 L-1 respectively.Also, the presence of snowflakes with a diameter of 6000 μm showed the evidence of positive effect in facilitating snowing.Since the seeding area was targeting at cloudless or partly cloudy area, the dark cloud band was found in the Himawari-8 satellite cloud pictures along the seeding trajectory clearly proved the seeding operation with significantly effective results.
Zengmei KANG
,
Yuwen SUN
,
Xiaobo DONG
,
Xiaoshen SUN
,
Rong MAI
,
Zhijun ZHAO
. A Response Effectiveness Evaluation for an Artificial Seeding Case of Winter Stratiform Clouds[J]. Plateau Meteorology, 2020
, 39(3)
: 620
-627
.
DOI: 10.7522/j.issn.1000-0534.2019.00045.
[1]Solak M E, Yorty D P, Griffith D A, 2003.Estimations of downwind cloud seeding effects in Utah[J].Journal of Weather Modification, 35(1): 1-7.
[2]Geerts B, Miao Q, Yang Y, al et, 2010.An airborne profiling radar study of the impact of glaciogenic cloud seeding on snowfall from winter orographic clouds[J].Journal of the Atmospheric Sciences, 67(10): 3286-3302.
[3]王黎俊, 银燕, 李仑格, 等, 2013a.三江源地区秋季典型多层层状云系的飞机观测分析[J].大气科学, 37(5): 1038-1058.DOI: 10.3878/j.issn.1006-9895.2013.12172.
[4]王黎俊, 银燕, 姚展予, 等, 2013b.三江源地区秋季一次层积云飞机人工增雨催化试验的微物理响应[J].气象学报, 71(5): 925-939.DOI: 10.11676/qxxb2013.070.
[5]余兴, 王晓玲, 戴进.2002.过冷层状云中飞机播云有效区域的模拟研究[J].气象学报, 60(2): 205-214.DOI: 10.11676/qxxb2002. 025.
[6]孙玉稳, 李宝东, 刘伟, 等, 2015.河北秋季层状云物理结构及适播性分析[J].高原气象, 34(1): 237-250.DOI: 10.7522/j.issn.1000 -0534.2013.00172.
[7]孙玉稳, 董晓波, 李宝东, 等, 2019.太行山东麓一次低槽冷锋降水云系云物理结构和作业条件的飞机观测研究[J].高原气象, 38(5): 971-982.DOI: 10.7522/j.issn.1000 -0534.2018.00102.
[8]蔡兆鑫, 周毓荃, 蔡淼, 2013.一次积层混合云系人工增雨作业的综合观测分析[J].高原气象, 32(5): 1460-1469.DOI: 10. 7522/j.issn.1000 -0534.2012.00115.
[9]朱士超, 郭学良, 2014.华北积层混合云中冰晶形状、 分布与增长过程的飞机探测研究[J].气象学报, 72(2): 366-389.DOI: 10.11676/qxxb2014.013.
[10]汪玲, 刘黎平, 2015.人工增雨催化区跟踪方法与效果评估指标研究[J].气象, 41(1): 84-91.DOI: 10.7519/j.issn.1000-0526. 2015.01.010.
[11]师宇, 楼小凤, 单云鹏, 等, 2017.北京地区一次降雪过程的人工催化数值模拟研究[J].高原气象, 36(5): 1276-1289.DOI: 10. 7522/j.issn.1000-0534.2016.00116.
[12]栾澜, 孟宪红, 吕世华, 等, 2017.青藏高原一次对流降水模拟中边界层参数化和云微物理的影响研究[J].高原气象, 36(2): 283-293.DOI: 10.7522/j.issn.1000-0534.2016.00086.
[13]孙霞, 银燕, 韩洋, 等, 2012.石家庄地区雾霾天气下云滴和云凝结核的分布特征[J].中国环境科学, 32(7): 1165-1170.
[14]孙玉稳, 银燕, 孙霞, 等, 2017.冷云催化宏微观物理响应的探测与研究[J].高原气象, 36(5): 1290-1303.DOI: 10.7522/j.issn. 1000 -0534.2016.00113.