Applicability Evaluation of Drought Indices in Northern China and the Reasons for Their Differences

  • Suping WANG ,
  • Jinsong WANG ,
  • Qiang ZHANG ,
  • Yiping LI
Expand
  • <sup>1.</sup>College of Atmospheric Science, Lanzhou University, Lanzhou 730000, Gansu, China;<sup>2.</sup>Institute of Arid Meteorology, China Meteorological Administration/ Key Laboratory of Arid Climate Change and Disaster Reduction, China Meteorological Administration/Key Laboratory of Arid Climatic Change and Disaster Reduction, Gansu Province, Lanzhou 730020, Gansu, China;<sup>3.</sup>Gansu Provincial Meteorological Bureau, Lanzhou 730020, Gansu, China

Received date: 2019-02-16

  Online published: 2020-06-28

Abstract

Drought monitoring is an essential component of drought research.It is normally performed using various drought indices.A number of drought indices have been introduced and applied in different regions.But some of those are region specific and have limitations of applicability in other climatic conditions.Based on daily meteorological data from 267 weather stations and soil relative humidity of 20 cm from 3 agrometeorological sites, the applicability of five drought indices include in MCI、 K、 SPI、 SPEI and Pa in Northern China were evaluated and the reasons for the difference of the monitoring results were discussed.The results showed that for the ability of drought monitoring, MCI and K indices have the best performances.MCI is particularly advantageous in spring in the study area.K index is slightly better than MCI in the easterly and southerly regions in summer, autumn and winter.Pa and SPI index performance well in summer and autumn, and SPEI do best in summer.The low monitoring accuracy of Pa, SPI and SPEI is mainly due to the light monitoring of these indexes or the high frequency of missing, while the K index also has a high frequency of missing in spring in the northeast region, up to 29%.The monitoring ability of various drought indexes is closely related to the drought factors and their time scales which are considered respectively.Taken together, MCI and K are better than other indices in the study area.

Cite this article

Suping WANG , Jinsong WANG , Qiang ZHANG , Yiping LI . Applicability Evaluation of Drought Indices in Northern China and the Reasons for Their Differences[J]. Plateau Meteorology, 2020 , 39(3) : 628 -640 . DOI: 10.7522/j.issn.1000-0534.2019.00049.

References

[1]Chen H, Sun J, 2015.Changes in drought characteristics over China using the standardized precipitation evapotranspiration index[J].Journal of Climate, 28(13): 5430-5447.
[2]Dai A, 2013.Increasing drought under global warming in observations and models[J].Nature Climate Change, 3(1): 52-58.
[3]Dogan S, Berktay A, Singh V P, 2012.Comparison of multi-monthly rainfall-based drought severity indices, with application to semi-arid Konya closed basin, Turkey[J].Journal of Hydrology, 470- 471: 255-268.
[4]Huang J P, Yu H P, Guan X D, al et, 2016.Accelerated dryland expansion under climate change[J].Nature Climate Change, 6: 166-171.
[5]Jain V K, Pandey R P, Jain M K, al et, 2015.Comparison of drought indices for appraisal of drought characteristics in the Ken River Basin[J].Weather and Climate Extremes, 8: 1-11.
[6]Kerr Y H, 2007.Soil moisture from space: Where are we?[J].Hydrogeology Journal, 15(1): 117-120.
[7]Lu Er, 2009.Determining the start, duration, and strength of flood and drought with daily precipitation: Rationale [J].Geophysical Research Letters, 36: L12707.DOI: 10.1029/ 2009GL038817.
[8]McKee T B, Doesken J, Kleist J, 1993.The relationship of drought frequency and duration to time scales[C]//Eight Conf.On Applied Climatology.Anaheim, CA, Amer.Meteor.Soc.17(22): 179-184.
[9]Morid S, Smakhtin V, Moghaddasi M, 2006.Comparison of seven meteorological indices for drought monitoring in Iran[J].International Journal of Climatology, 26(7): 971-985.
[10]Shahabfar A, Eitzinger J, 2013.Spatio-temporal analysis of droughts in semi-arid regions by using meteorological drought indices[J].Atmosphere, 4(2): 94-112.
[11]Vicente-Serrano S M, Santiago B, Juan I, 2010.A multi-scalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index-SPEI[J].Journal of Climate, 23: 1696-1718.
[12]Wang J S, Wang S P, Li Y P, al et, 2018.A study of the K drought monitoring model[J].Polish Journal of Environmental Studies, 27( 1): 1-9.DOI: 10.15244/pjoes/74901.
[13]Wang S P, Wang J S, Zhang Q, al et, 2016.Effect of precipitation deficit preceding severe droughts in Southwestern and Southern China[J].Discrete Dynamics in Nature and Society, (3): 1-10.
[14]Wilhite D A, 2000.Drought as a natural hazard: Concepts and definitions[M].London: Drought-National Drought Mitigation Center, chapter1, 3-18.
[15]Wu H, Hayes M J, Weiss A, al et, 2001.An evaluation of the standardized precipitation index, the China‐Z Index and the statistical Z-Score[J].International Journal of Climatology, 21(6): 745-758.
[16]蔡晓军, 茅海祥, 王文, 2013.多尺度干旱指数在江淮流域的适应性研究[J].冰川冻土, 35(4): 978-989.
[17]崔园园, 敬文琪, 覃军, 2018a.基于TIPEX Ⅲ资料对CLDAS-V2.0和GLDAS-NOAH陆面模式产品在青藏高原地区的适用性评估[J].高原气象, 37(5): 1143-1160.DOI: 10.7522/j.issn. 1000-0534.2018.00020.
[18]崔园园, 覃军, 敬文琪, 等, 2018b.GLDAS和CLDAS融合土壤水分产品在青藏高原地区的适用性评估[J].高原气象, 37(1): 123-136.DOI: 10.7522/j.issn.1000-0534.2017.00035.
[19]丁旭, 赖欣, 范广洲, 等, 2018.再分析土壤温湿度资料在青藏高原地区适用性的分析[J].高原气象, 37(3): 626-641.DOI: 10. 7522/j.issn.1000-0534.2017.00060.
[20]国家防汛抗旱总指挥部, 中华人民共和国水利部, 2007.中国水旱灾害公报2006[M].北京: 中国水利水电出版社, 15-24.
[21]国家防汛抗旱总指挥部, 中华人民共和国水利部, 2008.中国水旱灾害公报2008[M].北京: 中国水利水电出版社, 18-27.
[22]国家防汛抗旱总指挥部, 中华人民共和国水利部, 2010.中国水旱灾害公报2009[M].北京: 中国水利水电出版社, 17-27.
[23]国家防汛抗旱总指挥部, 中华人民共和国水利部, 2012.中国水旱灾害公报2011[M].北京: 中国水利水电出版社, 18-26.
[24]师春香, 谢正辉, 钱辉, 等, 2011.基于卫星遥感资料的中国区域土壤湿度EnKF数据同化[J].中国科学: 地球科学, 3: 375-385.
[25]沈国强, 郑海峰, 雷振锋, 2017.SPEI指数在中国东北地区干旱研究中的适用性分析[J].生态学报, 37 (11): 3787-3795.
[26]唐敏, 张勃, 张耀宗, 等, 2017.基于SPEI和SPI指数的青海省东部农业区春夏气象干旱特征的评估[J].自然资源学报, 32(6): 1029-1042.
[27]王春林, 陈慧华, 唐力生, 2012.广东省气象干旱图集[M].北京: 中国科学技术出版社, 12.
[28]王劲松, 郭江勇, 倾继祖, 2007.一种K干旱指数在西北地区春旱分析中的应用[J].自然资源学报, 22(5): 709-717.
[29]王劲松, 李忆平, 任余龙, 等, 2013.多种干旱监测指标在黄河流域应用的比较[J].自然资源学报, 28(8): 1337-1349.
[30]王静, 祁莉, 吴志伟, 等.2018.多套土壤湿度替代资料在青藏高原的适用性分析[J].高原气象, 37(2): 371-381.DOI: 10.7522/j.issn.1000-0534.2017.00074.
[31]王林, 陈文, 2014.标准化降水蒸散指数在中国干旱监测的适用性分析[J].高原气象, 33(2): 423-431.DOI: 10.7522/j.issn. 1000-0534.2013.00048.
[32]王素萍, 王劲松, 张强, 等, 2015.几种干旱指标对西南和华南区域月尺度干旱监测的适用性评价[J].高原气象, 34(6): 1616-1624.DOI: 10.7522/j.issn.1000-0534.2014.00089.
[33]王素萍, 张存杰, 宋连春, 等, 2013.多尺度气象干旱与土壤相对湿度的关系研究[J].冰川冻土, 35(4): 865-873.
[34]卫捷, 马柱国, 2003.Palmer干旱指数、 地表湿润指数与降水距平的比较[J].地理学报, 58(增刊): 117 -124.
[35]温克刚, 丁一汇, 2008.中国气象灾害大典综合卷[M].北京: 气象出版社, 159-229.
[36]吴子君, 张强, 石彦军, 等, 2017.多种累积降水量分布函数在中国适用性的讨论[J].高原气象, 36(5): 1221-1233.DOI: 10. 7522/j.issn.1000-0534.2016.00079.
[37]谢五三, 田红, 王胜, 等, 2013.基于CI指数的淮河流域干旱时空特征研究[J].气象, 39(9): 1171- 1175.
[38]谢五三, 王胜, 唐为安, 等, 2014.干旱指数在淮河流域的适用性对比[J].应用气象学报, 25(2): 176-184.
[39]杨庆, 李明星, 郑子彦, 等, 2017.7种气象干旱指数的中国区域适应性[J].中国科学: 地球科学, 47: 337-353.
[40]袁文平, 周广胜, 2004.标准化降水指标与Z指数在我国应用的对比分析[J].植物生态学报, 28(4): 523-529.
[41]袁云, 李栋梁, 安迪, 2010.基于标准化降水指数的中国冬季干旱分区及气候特征[J].中国沙漠, 30(4): 917-925.
[42]张存杰, 王宝灵, 刘德祥, 等, 1998.西北地区旱涝指标的研究[J].高原气象, 17(4): 381-389.
[43]张立杰, 李健, 2018.基于SPEI和SPI指数的西江流域干旱多时间尺度变化特征[J].高原气象, 37(2): 560-567.DOI: 10.7522/j.issn.1000-0534.2018.00013.
[44]张强, 张良, 崔显成, 等, 2011.干旱监测与评价技术的发展及其科学挑战[J].地球科学进展, 26(7): 763-778.
[45]中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2006.GB/T 20481-2006.气象干旱等级[S].北京: 中国标准出版社.
[46]中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2017.GB/T 20481-2017.气象干旱等级[S].北京: 中国标准出版社.
[47]中国气象局, 2006.中国气象灾害年鉴2005[M].北京: 气象出版社, 14-16, 113-117.
[48]中国气象局, 2007.中国气象灾害年鉴2006[M].北京: 气象出版社, 28-31.
[49]中国气象局, 2012.中国气象灾害年鉴2011[M].北京: 气象出版社, 10-16, 79-83.
[50]中国天气网, 2010.1949 -1990年中国干旱灾害事件[Z/OL].[2019-01-20].http: //.
[51]朱智, 师春香, 张涛, 等, 2018.四套再分析土壤湿度资料在中国区域的适用性分析[J].高原气象, 37(1): 240-252.DOI: 10. 7522/j.issn.1000-0534.2017.00033.
Outlines

/