Factors Related to the Interannual Variations of Spring Surface Winds over the Pastoral Transitional Zone in Northern China

  • Yihong HU ,
  • Daoyi GONG ,
  • Rui MAO ,
  • Jing YANG ,
  • Xiaoxue SHI
Expand
  • <sup>1.</sup>Key Laboratory of Environmental Change and Natural Disaster, Ministry of Education, Beijing Normal University, Beijing 100875, China;<sup>2.</sup>Academy of Disaster Reduction and Emergency Management, Beijing Normal University, Beijing 100875, China;<sup>3.</sup>Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

Received date: 2018-12-18

  Online published: 2020-06-28

Abstract

The possible influence of the atmospheric circulation and the land surface factors on interannual variation of wind speed over pastoral transitional zone in northern China in spring has been investigated, by employing daily wind speed observations for 15 meteorological stations, the ERA-Interim reanalysis data, and the GLASS leaf area index data.The results show that, in addition to a weakening trend (-0.10 m·s-1 per decade), the spring wind also experiments strong year-to-year variations.During the period of 1979 -2016, the interannual components accounts for 58% of the total variance.The wind interannual variability is strongly related to the anomalous cyclonic circulation in northeastern Asia.It strength, as being measured as the mean 700 hPa heights over 46°N -55°N and 116°E -130°E, has a significant correlation (-0.83) with the surface wind of the study area.When the anomalous cyclonic circulation is strengthened, there is an anomalous northwesterly wind over pastoral transitional zone, which subsequently results in stronger winds.Interannual changes of the anomalous cyclonic circulation is related to the planetary atmospheric circulation over the northern hemisphere, as demonstrated by its significant correlation with the Arctic Oscillation (r=0.41).Surface roughness is an important aerodynamic parameter with respect to the near surface vertical wind transport.Observations show that the leaf area index changes out-of-phase with wind speed.Annual scatter diagram shows that when the leaf area index increases 1 unit, the wind speed tends to decrease by approximate 1.57 m·s-1.Their interannual variations from 1982 -2014 yield a significant correlation of -0.61.There is also a negative correlation between NDVI and wind speed, but the correlation is not significant.It is probably because the leaf area index can better reflect the long-term variation of aerodynamic properties.The change of land surface physical conditions may also affect winds through the land-air heat flux.Analysis show that the interannual variations of surface wind are significantly related to the boundary layer height (r=0.57), sensible heat flux (r=0.39), and latent heat flux (r=-0.39).If only days with smaller wind speed (≤3 m·s-1) are considered, their relationship becomes more evident (r=0.59, 0.60 and -0.57, respectively).

Cite this article

Yihong HU , Daoyi GONG , Rui MAO , Jing YANG , Xiaoxue SHI . Factors Related to the Interannual Variations of Spring Surface Winds over the Pastoral Transitional Zone in Northern China[J]. Plateau Meteorology, 2020 , 39(3) : 651 -661 . DOI: 10.7522/j.issn.1000-0534.2019.00046.

References

[1]Ambaum M H P, Hoskins B J, Stephenson D B, 2001.Arctic oscillation or North Atlantic oscillation?[J].Journal of Climate, 14(16): 3495-3507.DOI: 10.1175/1520-0442(2001)014<3495: aoonao>2.0.co; 2.
[2]Bichet A, Wild M, Folini D, al et, 2012.Causes for decadal variations of wind speed over land: Sensitivity studies with a global climate model[J].Geophysical Research Letters, 39(11), L11701.DOI: 10.1029/2012gl051685.
[3]Chen L, Li D, Pryor S C, 2013.Wind speed trends over China: quantifying the magnitude and assessing causality[J].International Journal of Climatology, 33(11): 2579-2590.DOI: 10.1002/joc.3613.
[4]Chen W, Takahashi M, Graf H F, 2003.Interannual variations of stationary planetary wave activity in the northern winter troposphere and stratosphere and their relations to NAM and SST[J].Journal of Geophysical Research: Atmospheres, 108: D244797.DOI: 10.1029/2003jd003834.
[5]Davenport A G, 1960.Rationale for determining design wind velocities[J].Journal of the Sanitary Engineering Division, American Society of Civil Engineers, 86(5): 39-68.
[6]Dee D P, Uppala S M, Simmons A J, al et, 2011.The ERA-Interim reanalysis: Configuration and performance of the data assimilation system[J].Quarterly Journal of the Royal Meteorological Society, 137(656): 553-597.DOI: 10.1002/qj.828.
[7]Ebita A, Kobayashi S, Ota Y, al et, 2011.The Japanese 55-year reanalysis “JRA-55”: An interim report[J].SOLA, 7: 149-152.DOI: 10.2151/sola.2011-038.
[8]Gong D Y, Wang S W, Zhu J H, 2001.East Asian winter monsoon and Arctic Oscillation[J].Geophysical Research Letters, 28(10): 2073-2076.DOI: 10.1029/2000gl012311.
[9]Guo H, Xu M, Hu Q, 2015.Changes in near-surface wind speed in China: 1969 -2005[J].International Journal of Climatology, 31(3): 349-358.DOI: 10.1002/joc.2091.
[10]Jiang Y, Luo Y, Zhao Z C, al et, 2010.Changes in wind speed over China during 1956 -2004[J].Theoretical and Applied Climatology, 99(3-4): 421-430.DOI: 10.1007/s00704-009-0152-7.
[11]Li H Y, Fu C B, Guo W D, 2017.An integrated evaluation of land surface energy fluxes over China in seven reanalysis/modeling products[J].Journal of Geophysical Research: Atmospheres, 122(16): 8543-8566.DOI: 10.1002/2016jd026166.
[12]Lin C, Yang K, Qin J, al et, 2013.Observed coherent trends of surface and upper-air wind speed over China since 1960[J].Journal of Climate, 26(9): 2891-2903.DOI: 10.1175/jcli-d-12-00093.1.
[13]Mcvicar T R, Roderick M L, Donohue R J, al et, 2012.Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation[J].Journal of Hydrology, 416: 182-205.DOI: 10.1016/j.jhydrol.2011.10.024.
[14]Roberts J B, Robertson F R, Clayson C A, al et, 2012.Characterization of turbulent latent and sensible heat flux exchange between the atmosphere and ocean in MERRA[J].Journal of Climate, 25(3): 821-838.DOI: 10.1175/jcli-d-11-00029.1.
[15]St George S, Wolfe S A, 2009.El Ni?o stills winter winds across the southern Canadian Prairies[J].Geophysical Research Letters, 37(6), L06801.DOI: 10.1029/2010GL042940.
[16]Tucker C J, Pinzon J E, Brown M E, al et, 2005.An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data[J].International Journal of Remote Sensing, 26(20): 4485-4498.DOI: 10.1080/01431160500168686.
[17]Vautard R, Cattiaux J, Yiou P, al et, 2010.Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness[J].Nature Geoscience, 3(11): 756-761.DOI: 10.1038/ngeo979.
[18]Wang L, Chen W, Huang G, al et, 2017.Changes of the transitional climate zone in East Asia: past and future[J].Climate Dynamics, 49(4): 1463-1477.DOI: 10.1007/s00382-016-3400-4.
[19]Wu J, Zha J, Zhao D, 2016.Estimating the impact of the changes in land use and cover on the surface wind speed over the East China Plain during the period 1980 -2011[J].Climate Dynamics, 46(3/4): 847-863.DOI: 10.1007/s00382-015-2616-z.
[20]Wu J, Zha J, Zhao D, al et, 2018.Changes in terrestrial near-surface wind speed and their possible causes: an overview[J].Climate Dynamics, 51(5/6): 2039-2078.DOI: 10.1007/s00382-017-3997-y.
[21]Xing Q, Wu B F, Yan N N, al et, 2017.Evaluating the Relationship between Field Aerodynamic Roughness and the MODIS BRDF, NDVI, and Wind Speed over Grassland[J].Atmosphere, 8(12): 16.DOI: 10.3390/atmos8010016.
[22]Xu M, Chang C P, Fu C, al et, 2006.Steady decline of East Asian monsoon winds, 1969 -2000: Evidence from direct ground measurements of wind speed[J].Journal of Geophysical Research, 111(D24).DOI: 10.1029/2006jd007337.
[23]Yang X, Ferrat M, Li Z Q, 2013.New evidence of orographic precipitation suppression by aerosols in central China[J].Meteorology and Atmospheric Physics, 119(1/2): 17-29.DOI: 10.1007/s00703-012-0221-9.
[24]You Q L, Kang S C, Flügel W A, al et, 2010.Decreasing wind speed and weakening latitudinal surface pressure gradients in the Tibetan Plateau[J].Climate Research, 42(1): 57-64.DOI: 10.3354/cr00864.
[25]杜一博, 张强, 王凯嘉, 等, 2018.西北干旱区夏季晴天、 阴天边界层结构及其陆面过程对比分析[J].高原气象, 37(1): 148-157.DOI: 10.7522/j.issn.1000-0534.2017.00042.
[26]范一大, 史培军, 周俊华, 等, 2005.近50年来中国沙尘暴变化趋势分析[J].自然灾害学报, 14(3): 22-28.DOI: 10.3969/j.issn.1004-4574.2005.03.004.
[27]胡开喜, 陆日宇, 王东海, 2011.东北冷涡及其气候影响[J].大气科学, 35(1): 179-191.DOI: 10.3878/j.issn.1006-9895.2011.01.15.
[28]刘纪远, 匡文慧, 张增祥, 等, 2014.20世纪80年代末以来中国土地利用变化的基本特征与空间格局[J].地理学报, 69(1): 3-14.DOI: 10.11821/dlxb201401001.
[29]史培军, 2009.中国北方农牧交错带土地利用时空格局与优化模拟[M].北京: 科学出版社, 15-20.
[30]苏彦入, 吕世华, 范广洲, 2018.青藏高原夏季大气边界层高度与地表能量输送变化特征分析[J].高原气象, 37(6): 1470-1485.DOI: 10.7522/j.issn.1000-0534.2018.00040.
[31]孙力, 郑秀雅, 王琪, 1994.东北冷涡的时空分布特征及其与东亚大型环流系统之间的关系[J].应用气象学报, 5(3): 297-303.
[32]王典, 周德刚, 黄荣辉, 等, 2017.基于敦煌戈壁站观测对几套再分析产品夏季地表感热通量的评估[J].气候与环境研究, 22(5): 601-612.DOI: 10.3878/j.issn.1006-9585.2017.16212.
[33]王会军, 范可, 2013.东亚季风近几十年来的主要变化特征[J].大气科学, 37(2): 313-318.DOI: 10.3878/j.issn.1006-9895. 2012.12301.
[34]王新敏, 邹旭恺, 翟盘茂, 2007.北半球温带气旋的变化[J].气候变化研究进展, 3(3): 154-157.DOI: 10.3969/j.issn.1673-1719.2007.03.006.
[35]魏凤英, 2008.气候变暖背景下我国寒潮灾害的变化特征[J].自然科学进展, 18(3): 289-295.DOI: 10.3321/j.issn: 1002-008X.2008.03.007.
[36]向阳, 肖志强, 梁顺林, 等, 2014.GLASS叶面积指数产品验证[J].遥感学报, 18(3): 573-596.DOI: 10.11834 /jrs.20143117.
[37]解晋, 余晔, 刘川, 等, 2018.青藏高原地表感热通量变化特征及其对气候变化的响应[J].高原气象, 37(1): 28-42.DOI: 10. 7522/j.issn.1000-0534.2017.00019.
[38]严晓强, 胡泽勇, 孙根厚, 等, 2019.那曲高寒草地长时间地面热源特征及其气候影响因子分析[J].高原气象, 38(2): 253-263.DOI: 10.7522/j.issn.1000-0534.2018.00091.
[39]张杰, 黄建平, 张强, 2010.稀疏植被区空气动力学粗糙度特征及遥感反演[J].生态学报, 30(11): 2819-2827.
[40]赵松乔, 1953.察北、 察盟及锡盟——一个农牧过渡地区经济地理调查[J].地理学报, 19(1): 43-60.
[41]赵宗慈, 罗勇, 江滢, 2011.风电场对气候变化影响研究进展[J].气候变化研究进展, 7(6): 400-406.DOI: 10.3969/j.issn. 1673-1719.2011.06.003.
Outlines

/