Influence of the West Pacific Subtropical High on Forest Fires in China

  • Yujie LI ,
  • Xiaoqing GAO ,
  • Jingjin MA ,
  • Liwei YANG
Expand
  • <sup>1.</sup>Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions of Chinese Academy of Sciences, Northwest Institute of Eco-Environment and Resources, Chinese academy of sciences, Lanzhou 730000, Gansu, China;<sup>2.</sup>University of Chinese Academy of Sciences, Beijing 100049, China;<sup>3.</sup>Beijing Smartclimate Technology Co. Ltd, Beijing 100089, China

Received date: 2019-11-12

  Online published: 2020-06-28

Abstract

Forests are the foundation for sustained, healthy and rapid development of the entire national economy. Forest fires have a huge impact on global ecosystems and human society. China is a country with abundant forest species but insufficient per capita possession. The management and prediction of forest fires is an indispensable part of forest protection in China. This paper uses the monthly data of 500 hPa potential height field in NCEP/NCAR reanalysis dataset I, the forest fire data in China from 2007 to 2017 which provided by the Chinese Academy of Forestry, monthly data of the temperature and precipitation at 512 meteorological observation stations. The aim of the paper is to analyze the impact of the West Pacific subtropical high on forest fires in China. The following conclusions have been drawn: (1) Since 2007, the number of forest fires in the country has shown a downward trend. On average, the number of fires in the year is 940. The higher three years with fire occurrence are 2007, 2008 and 2009, and the lower three years are 2016, 2015 and 2012.The three months in which forest fires occur more frequently are March, February, and April, and the less three months are September, August, and July. (2) China's forest fires are mainly distributed in the Northeastern China, some provinces in East China, Central China, South China, and some provinces in Southwestern China. There were more fires in 2007 -2010, and fewer fires occurred in 2011 -2016. There were more forest fires in spring and winter, and fewer fires in summer, respectively. (3) The occurrence of forest fires is affected by temperature and precipitation, and has a significant negative correlation with precipitation and a significant positive correlation with temperature. (4) The West Pacific subtropical high has a certain directive effect on forest fires in China. Subtropical high ridge index, subtropical high area index, and subtropical high ridge point all have significant negative correlations with the number of forest fires. With the increase in the intensity of the West Pacific subtropical high, the northward and westward extension of West Pacific subtropical high, the risk of forest fires in southern China is reduced. This study considers the impact of the West Pacific subtropical high on forest fires and has important implications for the control and prediction of forest fires in China, and has a certain directive significance for the usage of the researches on the West Pacific subtropical high.

Cite this article

Yujie LI , Xiaoqing GAO , Jingjin MA , Liwei YANG . Influence of the West Pacific Subtropical High on Forest Fires in China[J]. Plateau Meteorology, 2020 , 39(3) : 662 -672 . DOI: 10.7522/j.issn.1000-0534.2020.00015.

References

[1]Alain V, Claire D R, 1995. Evaluating forest fire hazard with a Landsat TM derived water stress index[J]. Agricultural and Forest Meteorology, 77(3): 207-224. DOI: 10.1016/0168-1923(95)02262-V.
[2]Clark K C, 1996. Recent trends in geographic information system research[M]. USA: Geoprocessing.
[3]Dey D C, 2014. Sustaining oak forests in eastern North America: regeneration and recruitment, the pillars of sustainability[J]. Forest Science, 60(5): 926-942. DOI: 10.5849/forsci.13-114.
[4]Kozlowski T T, Pallardy S G, 1997. Growth Control in woody plants[M]. USA: Academic Press.
[5]Kozlowski T, 2000. Responses of woody plants to human-induced environmental stresses: issues, problems and strategies for alleviating stress[J]. Critical Reviews in Plant Sciences, 19(2): 91-170. DOI: 10.1016/S0735-2689(00)80001-5.
[6]Lin R, Zhu J, Zheng F, 2016. Decadal shifts of East Asian summer monsoon in a climate model free of explicit GHGs and aerosols[J]. Scientific Reports, (6): 38-46. DOI: 10.1038/srep38546.
[7]Matt W J, Cochrane M A, Patrick H F, al et, 2014. Climate-induced variations in global wild?re danger from 1979 to 2013[J]. Nature Communications, 6: 252-271. DOI: 10.1038/ncomms8537.
[8]Sander V, Brendan M, Rogers M L, al et, 2017. Lightning as a major driver of recent large ?re years in North American boreal forests[J]. Nature Climate Change, 7(7): 529-536. DOI: 10. 1038/NCLIMATE3329.
[9]Siegert F, Ruecker G, Hinrichs A, al et, 2001. Increased damage from fires in logged forests during droughts caused by El Nino[J]. Nature, 414(6862): 437-440. DOI: 10.1038/35106547.
[10]Ye T S, Zhi R, Zhao J H, al et, 2014. The two annual northward jumps of the West Pacific Subtropical High and their relationship with summer rainfall in Eastern China under global warming[J]. Chinese Physics B, 23(6): 169-203.
[11]池再香, 胡跃文, 夏阳, 等, 2019. 云贵高原东部两次典型气象干旱年汛期环流特征对比[J]. 高原气象, 38(3): 528-538. DOI: 10.7522/j.issn.1000-0534.2018.00161.
[12]池再香, 夏阳, 刘莉娟, 等, 2018. 基于积温干燥度指数的云贵高原东部汛期干湿变化趋势分析[J]. 高原气象, 37(6): 1199-1207. DOI: 10.7522/j.issn.1000-0534.2018.00075.
[13]龚道溢, 何兆学, 2002. 西太平洋副热带高压的年代际变化及其气候影响[J]. 地理学报, 57(2): 185-193.
[14]桓玉, 李跃清, 2018. 夏季东亚季风和南亚季风协同作用与我国南方夏季降水异常的关系[J]. 高原气象, 37(6): 1563-1577. DOI: 10.7522/j.issn.1000-0534.2018.00044.
[15]黄家俊, 张强, 张生, 等, 2017. 基于信息熵的新疆降水时空变异特征研究[J]. 生态学报, 37(13): 4444-4455. DOI: 10.5846/stxb201412052409.
[16]金爱浩, 曾刚, 余晔, 等, 2018. 南亚高压与西太平洋副热带高压经纬向位置配置对中国东部夏季降水的影响[J]. 热带气象学报, 34(6): 807-818. DOI: 10.16032/j.issn.1004-4965.2018. 06.009.
[17]李斐, 2017. 开都河流域上游气候变化及其对水资源的影响[D]. 兰州: 兰州大学.
[18]李红革, 薛梅, 王晓明, 2009. 谈森林火灾与气象要素的密切关系[J]. 林业勘查设计, 152(4): 109-120.
[19]刘珉, 2014. 多角度解读第八次全国森林资源清查结果[J]. 林业经济, 5: 3-15. DOI: 10.13843/j.cnki.lyjj.2014.05.001.
[20]刘芸芸, 丁一汇, 2009. 西北太平洋夏季风对中国长江流域夏季降水的影响[J]. 大气科学, 33(6): 1225-1237.
[21]刘芸芸, 李维京, 艾秀, 等, 2012. 月尺度西太平洋副热带高压指数的重建与应用[J]. 应用气象学报, 23(4): 414-423.
[22]舒立福, 张小罗, 戴兴安, 等, 2003. 林火研究综述(Ⅱ)——林火预测预报[J]. 世界林业研究, 16(4): 34-37. DOI: 10.13348/j.cnki.sjlyyj.2003.04.007.
[23]覃先林, 2005. 遥感和地理信息系统技术相结合的林火预警方法的研究[D]. 北京: 中国林科院资源信息所遥感室.
[24]吴姗薇, 郭大勇, 2019. 东亚夏季风与西太副高活动对全国夏季降水的影响[J]. 科技创新导报, 16: 112-119. DOI: 10.16660/j.cnki.1674-098X.2019.16.112.
[25]肖刚, 2005. 国内外森林防火技术现状及趋势探讨[D]. 天津: 天津大学.
[26]许田田, 范广洲, 张永莉, 等, 2018. 东亚与太平洋地区热力差异对东亚季风的影响[J]. 高原气象, 37(6): 1643-1654. DOI: 10. 7522/j.issn.1000-0534.2018.00053.
[27]许云凡, 陈权亮, 郑飞, 2018. 夏季西太平洋副高年际变化及异常特征分析[J]. 海洋预报, 35(6): 25-33. DOI: 10.11737/j.issn.1003-0239.2018.06.003.
[28]姚秀萍, 于玉斌, 刘还珠, 2005. 2003年淮河流域异常降水期间副热带高压的特征[J].热带气象学报, 21(4): 393-401. DOI: 10.16032/j.issn.1004-4965.2005.04.007.
[29]于成龙, 2007. 基于GIS和RS森林火险预测的研究[D]. 哈尔滨: 东北林业大学.
[30]于天宠, 张智奇, 曲骅倩, 等, 2016. 西太平洋副热带高压与中国气温变化的相关性分析[J]. 现代农业科技, 1: 268-272.
[31]张宇, 李耀辉, 王劲松, 等, 2014. 2013年7月我国南方异常持续高温成因分析[J]. 热带气象学报, 30(6): 1172-1180. DOI: 10. 3969/j.issn.1004-4965.2014.06.018.
Outlines

/