Characteristics of Temperature Variation in Warm Season over the Northern Hemisphere during the Global Warming Hiatus

  • Wen LUO ,
  • Xiaodan GUAN ,
  • Yongli HE ,
  • Ruixia GUO ,
  • Zhaolin LI ,
  • Chenyu CAO
Expand
  • <sup>1.</sup>Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, Lanzhou University, Lanzhou 730000, Gansu, China;<sup>2.</sup>College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, Gansu, China

Received date: 2018-10-29

  Online published: 2020-08-28

Abstract

The carbon dioxide in the atmosphere has increased monotonically over the past century.However, global mean surface air temperature did not rise significantly since the late 1990s.This decadal signal of cooling phenomenon drew the attention of the public and was named global warming hiatus.Most of studies have explored the mechanisms of the temperature variation in cold season during the warming hiatus.However, investigation on the temperature variation in warm season during the warming hiatus has received limited attention.In this paper, using the monthly temperature data from 1901 to 2015 provided by CRU (Climatic Research Unit) and adopting the methods of linear regression analysis and ensemble empirical mode decomposition (EEMD), the spatial and temporal distribution characteristics of warm season temperature variation over the Northern Hemisphere (NH) during the global warming hiatus were analyzed.The results show that the temperature in warm season continued to rise during the global warming hiatus, which exhibited the opposite trend contrast with cold season.In addition, the temperature changes in warm season present obvious regional difference in NH land, such as a significant warming in the northern North America and southeastern Europe while cooling in central Eurasia.In order to explore the reason why there are different decadal temperature variations over above three regions, the multi-scale analysis was applied on times series of temperature variation by the method of EEMD.The results indicated that a synergy effect between the long-term trend and the decadal modulated oscillation (DMO) in different phases leads to different temperature change in above three regions, and temperature in southeastern Europe has the fastest rising due to the fact that the long-term trend and DMO rose simultaneously.Considering the close relationship between the DMO and atmospheric circulation, it is founded that the geopotential height increased over northern North America and southeastern Europe during the global warming hiatus, and the corresponding blocking frequency increased, which led to extremely high temperature events and accelerated local temperature rising.On the contrary, it was the opposite situation in the central Eurasia.Therefore, this study concluded that the regional difference of temperature change in NH land during global warming hiatus was dominated by atmospheric circulation.This study provided a new dynamic mechanism for decadal temperature variation from the point of atmosphere circulation, which helps climatologists to better understand the climate change.

Cite this article

Wen LUO , Xiaodan GUAN , Yongli HE , Ruixia GUO , Zhaolin LI , Chenyu CAO . Characteristics of Temperature Variation in Warm Season over the Northern Hemisphere during the Global Warming Hiatus[J]. Plateau Meteorology, 2020 , 39(4) : 673 -682 . DOI: 10.7522/j.issn.1000-0534.2019.00031

References

[1]Chen X, Tung K K, 2014.Varying planetary heat sink led to global-warming slowdown and acceleration[J].Science, 345(6199): 897-903.DOI: 10.1126/science.1254937.
[2]Dai A, Fyfe J C, Xie S P, al et, 2015.Decadal modulation of global surface temperature by internal climate variability[J].Nature Climate Change, 5(6): 555-559.DOI: 10.1038/nclimate2605.
[3]Davini P, Cagnazzo C, Gualdi S, al et, 2012.Bidimensional diagnostics, variability and trends of Northern Hemisphere blocking[J].Journal of Climate, 25(19): 6496-6509.DOI: 10.1175/JCLI-D-12-00032.1.
[4]Dole R, Hoerling M, Perlwitz J, al et, 2011.Was there a basis for anticipating the 2010 Russian heat wave?[J].Geophysical Research Letters, 38(6): L06702.DOI: 10.1029/2010GL046582.
[5]England M H, McGregor S, Spence P, al et, 2014.Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus[J].Nature Climate Change, 4(3): 222-227.DOI: 10.1038/nclimate2106.
[6]Foster G, Rahmstorf S, 2011.Global temperature evolution 1979 -2010[J].Environmental Research Letters, 6(4): 526-533.DOI: 10.1088/1748-9326/6/4/044022.
[7]Guan X, Huang J, Guo R, al et, 2015.The role of dynamically induced variability in the recent warming trend slowdown over the Northern Hemisphere[J].Scientific Reports, 5(1): 12669.DOI: 10.1038/ srep12669.
[8]Higuchi K, Huang J, Shabbar A, 1999.A wavelet characterization of the North Atlantic oscillation variation and its relationship to the North Atlantic sea surface temperature[J].International Journal of Climatology, 19(10): 1119-112.DOI: 10.1002/(SICI)1097-0088(199908)19: 103.0.CO; 2-7.
[9]Huang J, Higuchi K, Shabbar A, 1998.The relationship between the North Atlantic Oscillation and El Ni?o-Southern Oscillation[J].Geophysical Research Letters, 25(14): 2707-2710.DOI: 10. 1029/98GL01936.
[10]Huang J, Xie Y, Guan X, al et, 2016.The dynamics of the warming hiatus over the Northern Hemisphere[J].Climate Dynamics, 48(1/2): 1-18.DOI: 10.1007/s00382-016-3085-8.
[11]Hu X, Sejas S A, Cai M, al et, 2018.Decadal evolution of the surface energy budget during the fast warming and global warming hiatus periods in the ERA-interim[J].Climate Dynamics, 50: 1-12.DOI: 10.1007/s00382-018-4232-1.
[12]IPCC, 2013.Climate Change 2013: The physical science basis: Summary for policymakers[R].Working Group I Contribution to the IPCC 15th Assessment Report.Cambridge University Press.
[13]Jevrejeva S, Moore J C, Grinsted A, 2010.How will sea level respond to changes in natural and anthropogenic forcings by 2100?[J].Geophysical Research Letters, 37: L07703.DOI: 10.1029/2010GL042947.
[14]Ji F, Wu Z, Huang J, al et, 2014.Evolution of land surface air temperature trend[J].Nature Climate Change, 4(6): 462-466.DOI: 10.1038/nclimate2223.
[15]Katsman C A, Oldenborgh G J V, 2011.Tracing the upper ocean’s “missing heat”[J].Geophysical Research Letters, 38(14): L14610.DOI: 10.1029/2011GL048417.
[16]Kaufmann R K, Kauppi H, Mann M L, al et, 2011.Reconciling anthropogenic climate change with observed temperature 1998 -2008[J].Proceedings of the National Academy of Sciences, 108(29): 11790-11793.DOI: 10.1073/pnas.1102467108.
[17]Knight J, Kenneby J J, Folland C, al et, 2009.Do global temperature trends over the last decade falsify climate predictions? In state of the climate in 2008[J].Bulletin of the American Meteorological Society, 90(8): 22-23.
[18]Kosaka Y, Xie S P, 2013.Recent global-warming hiatus tied to equatorial Pacific surface cooling[J].Nature, 501(7467): 403-407.DOI: 10.1038/nature12534.
[19]Lejenas H, Okland H, 1983.Characteristics of northern hemisphere blocking as determined from long time series of observational data[J].Tellus A: Dynamic Meteorology and Oceanography, 35(5): 350-362.DOI: 10.3402/tellusa.v35i5.11446.
[20]Meehl G A, Teng H, 2014.CMIP5 multi-model hindcasts for the mid-1970s shift and early 2000s hiatus and predictions for 2016-2035[J].Geophysical Research Letters, 41(5): 1711-1716.DOI: 10.1002/2014GL059256.
[21]Ogi M, Yamazaki K, Tachibana Y, 2005.The summer northern annular mode and abnormal summer weather in 2003[J].Geophysical Research Letters, 32: 1-4.DOI: 10.1029/2004GL021528.
[22]Rex D F, 1950.Blocking action in the middle troposphere and its effect upon regional climate[J].Tellus, 2(3): 196-211.DOI: 10.3402/tellusa.v2i4.8603.
[23]Solomon S, Rosenlof K H, Portmann R W, al et, 2010.Contributions of stratospheric water vapor to decadal changes in the rate of global warming[J].Science, 327(5970): 1219-1223.DOI: 10.1126/science.1182488.
[24]Stott P A, Stone D A, Allen M R, 2004.Human contribution to the European heatwave of 2003[J].Nature, 432: 610-614.DOI: 10.1038/nature03089.
[25]Tibaldi S, Molteni F, 1990.On the operational predictability of blocking[J].Tellus A: Dynamic Meteorology and Oceanography, 42(3): 343-365.DOI: 10.3402/tellusa.v42i3.11882.
[26]Treidl R A, Birch E C, Sajecki P, 1981.Blocking action in the northern hemisphere: A climatological study[J].Atmosphere-Ocean, 19(1): 1-23.DOI: 10.1080/07055900.1981.9649096.
[27]Trenberth K E, Fasullo J T, Branstator G, al et, 2014.Seasonal aspects of the recent pause in surface warming[J].Nature Climate Change, 4(10): 911-916.DOI: 10.1038/nclimate2341.
[28]Wallace J M, Fu Q, Smoliak B V, al et, 2012.Simulated versus observed patterns of warming over the extratropical Northern Hemisphere continents during the cold season[J].Proceedings of the National Academy of Sciences, 109(36): 14337-14342.DOI: 10.1073/pnas.1204875109.
[29]Wu Z, Huang N E, 2009.Ensemble empirical mode decomposition: A noise-assisted data analysis method[J].Advances in Adaptive Data Analysis, 1(1): 1-41.DOI: 10.1142/S1793536909000047.
[30]Zhao L, Ding R, Moore J C, 2016.The high mountain Asia glacier contribution to sea-level rise from 2000 to 2050[J].Annals of Glaciology, 57(71): 223-231.DOI: 10.3189/2016AoG71A049.
[31]曹杨, 陈洪滨, 李军, 等, 2017.利用再分析与探空资料对0 ℃层高度和地面气温变化特征及其相关性的分析[J].高原气象, 36(6): 1608-1618.DOI: 10.7522/j.issn.1000-0534.2017.00011.
[32]陈少勇, 王劲松, 郭俊庭, 等, 2012.中国西北地区1961 -2009年极端高温事件的演变特征[J].自然资源学报, 27(5): 832-844.DOI: 10.3760/j.issn: 1001-7097.2006.01.007.
[33]仇永炎, 1985.中期天气预报[M].北京: 科学出版社.
[34]季明霞, 黄建平, 王绍武, 等, 2008.冬季中高纬地区阻塞高压活动及其气候影响[J].高原气象, 27(2): 415-421.
[35]金荣花, 李艳, 王式功, 2009.四种客观定量表征阻塞高压方法的对比分析[J].高原气象, 28(5): 1121-1128.
[36]刘菊菊, 游庆龙, 周毓荃, 等, 2018.基于ERA-Interim的中国云水量时空分布和变化趋势[J].高原气象, 37(6): 1590-1604.DOI: 10.7522/j.issn.1000-0534.2018.00059.
[37]李黎, 吕世华, 范广洲, 2019.夏季青藏高原地表能量变化对高原低涡生成的影响分析[J].高原气象, 38(6).DOI: 10.7522/j.issn.1000-0534.2018.00074.
[38]李红梅, 李林, 2015.2 ℃全球变暖背景下青藏高原平均气候和极端气候事件变化[J].气候变化研究进展, 11(3): 157-164.DOI: 10.3969/j.issn.1673-1719.2015.03.00.
[39]李宗省, 何元庆, 辛惠娟, 等, 2010.我国横断山区1960 -2008年气温和降水时空变化特征[J].地理学报, 65(5): 563-579.DOI: 10.11821/xb201005006.
[40]吕晶, 李忠贤, 李跃清, 等, 2018.峨眉山及其周边地区降水气候特征研究[J].高原气象, 37(6): 1544-1562.DOI: 10.7522/j.issn.1000-0534.2018.00049.
[41]秦大河, 2014.气候变化科学与人类可持续发展[J].地理科学进展, 33(7): 874-883.DOI: 10.11820/dlkxjz.2014.07.002.
[42]魏萌, 乔方利, 2016.CMIP5气候模式模拟的1850 -2014年全球温度变化的集合经验模态分解[J].中国科学: 地球科学, 46(12): 1675-1688.DOI: 10.1007/s11430-015-5465-y.
[43]杨朝虹, 张镭, 苑广辉, 等, 2018.东亚和北美地区温度和降水变化特征[J].高原气象, 37(3): 662-674.DOI: 10.7522/j.issn. 1000-0534.2017.00083.
[44]张渊萌, 程志刚, 2014.青藏高原增暖海拔依赖性研究进展[J].高原山地气象研究, 34(2): 91-96.DOI: 10.3969/j.issn.1674-2184.2014.02.018.
Outlines

/