[1]Amaty P M, Ma Y M, Cunbo H, al et, 2015.Recent trends (2003 -2013) of land surface heat fluxes on the southern side of the central Himalayas, Nepal[J].Journal of Geophysical Research: Atmospheres, 120, 11957-11970.DOI: 10.1002/2015jd023510.
[2]Bastiaanssen W G M, 2000.SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey[J].Journal of Hydrology, 229, 87-100.DOI: 10.1016/s0022-1694(99)00202-4.
[3]Carlson T N, Ripley D A, 1997.On the relation between NDVI, fractional vegetation cover, and leaf area index[J].Remote Sensing of Environment, 62, 241-252.DOI: 10.1016/s0034-4257(97)00104-1.
[4]Choudhury B J, Idso S B, Reginato R J, 1987.Analysis of an empirical model for soil heat flux under a growing wheat crop for estimating evaporation by an infrared-temperature based energy balance equation[J].Agricultural and Forest Meteorology, 39, 283-297.DOI: 10.1016/0168-1923(87)90021-9.
[5]Eugster W, Rouse W, Pielkesr R A, al et, 2000.Land-atmosphere energy exchange in arctic tundra and boreal forest: Available data and feedbacks to climate[J].Global Change Biology, 6(1): 84-115.DOI: 10.1046/j.1365-2486.2000.06015.x.
[6]Jackson R D, Moran M S, Gay L W, al et, 1987.Evaluating Evaporation from field crops using airborne radiometry and ground-based meteorological data[J].Irrigation Science, 8 (2): 81-90.DOI: 10.1007/BF00259473.
[7]Liang S, 2001.Narrowband to broadband conversions of land surface albedo I Algorithms[J].Remote Sensing of Environment, 76 (2), 213-238.DOI: 10.1016/s0034-4257(00)00205-4.
[8]Moran M S, Jackson R D, Raymond L H, al et, 1989.Mapping surface energy balance components by combining Landsat thermatic mapper and ground-based meteorological data[J].Remote Sensing of Environment, 30, 77-87.DOI: 10.1016/0034-4257(89)90049-7.
[9]Ma Y M, 2006.Determination of regional surface heat fluxes over heterogeneous landscapes by integrating satellite remote sensing with boundary layer observations[D].The Netherlands: Wageningen University, 1-181.
[10]Ma Y M, Ishikawa H, Tsukamoto O, al et, 2003.Regionalization of surface fluxes over heterogeneous landscape of the Tibetanan Plateau by using satellite remote sensing data[J].Journal of the Meteorological Society of Japan, 81(2): 277-293.DOI: 10.2151/jmsj.81.277.
[11]Osterkamp T, 1987.Freezing and thawing of soils and permafrost containing unfrozen water or brine[J].Water Resources Research, 23(12): 2279-2285.DOI: 10.1029/wr023i012p02279.
[12]Qi J G, Chehbouni A, Huete A, al et, 1994.A modified soil adjusted vegetation index[J].Remote Sensing of Environment, 48 (2), 119-126.DOI: 10.1016/0034-4257(94)90134-1.
[13]Su Z B, 2002.The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes[J].Hydrology and Earth System Sciences, 6(1), 85-100..
[14]Wu T H, Lin Z, Ren L, al et, 2013.Recent ground surface warming and its effects on permafrost on the central Qinghai-Tibetan Plateau[J].International Journal of Climatology, 33: 920-930.DOI: 10.1002/joc.3479.
[15]Tanaka K, Tamagawa I, Ishikawa H, al et, 2003.Surface energy budget and closure of the eastern Tibetanan Plateau during the GAME-Tibetan IOP 1998[J].Journal of Hydrology, 283: 169-183.
[16]Tsukamoto O, Sahashi K, Wang J M, 1995.Heat budget and evaptranspiration at an oasis surface surrounded by desert[J].Journal of the Meteorological Society of Japan, 73(5): 925-935..
[17]Yang C, Wu T H, Wang J M, al et, 2019.Estimating surface soil heat flux in permafrost regions using remote sensing-based models on the Northern Qinghai-Tibetanan Plateau under clear-sky conditions[J].Remote Sensing, 11 (4), 416.DOI: 10.3390/rs11040416.
[18]Yang C, Wu T H, Yao J M, al et, 2020.An assessment of using remote sensing-based models to estimate ground surface soil heat flux on the Tibetanan Plateau during the freeze-thaw process[J].Remote Sensing, 12, 501..
[19]Yang K, Wang J M, 2008.A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data[J].Science in China (Series D: Earth Sciences), 05: 99-107.
[20]Yang K, He J, Tang W J, al et, 2010.On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetanan Plateau[J].Agricultural and Forest Meteorology, 150(1), 38-46.DOI: 10.1016/j.agrformet.2009. 08.004.
[21]Yao J M, Zhao L, Gu L L, al et, 2011.The surface energy budget in the permafrost region of the Tibetanan Plateau[J].Atmospheric Research, 102(4): 394-407.DOI: 10.1016/j.atmosres.2011. 09.001.
[22]Zhang X D, Zhou J, Frank-Michael G, al et, 2019.A method based on temporal component decomposition for estimating 1-km all-weather land surface temperature by merging satellite thermal infrared and passive microwave observations[J].IEEE Transactions on Geoscience and Remote Sensing, 57: 4670-4691..
[23]Zhong L, Ma Y M, Hu Z Y, al et, 2019.Estimation of hourly land surface heat fluxes over the Tibetanan Plateau[J].Atmospheric Chemistry and Physics, 19: 5529-5541..
[24]Zhou J, Zhang X D, Zhan W F, al et, 2017.A thermal sampling depth correction method for land surface temperature estimation from satellite passive microwave observation over barren land[J].IEEE Transactions on Geoscience and Remote Sensing, 55: 4743-4756..
[25]程国栋, 赵林, 2000.青藏高原开发中的冻土问题[J].第四纪研究, 20(6): 521-531.
[26]段丽君, 段安民, 胡文婷, 等, 2017.2014 年夏季青藏高原狮泉河与林芝降水低频振荡及陆—气过程日变化特征[J].大气科学, 41 (4): 767-783.
[27]谷良雷, 2011.青藏高原季节冻土区和多年冻土区地表能量收支和蒸散发对比研究[D].兰州: 中国科学院寒区旱区环境与工程研究所, 1-136.
[28]郝雅婕, 邓巧玲, 王艳霞, 等, 2019.元江干热河谷稀树灌丛土壤热通量特征[J].西北林学院学报, 34(5): 23-28.DOI: 10.3969/j.issn.1001-7431.2019.05.04.
[29]何杰, 2010.中国区域高时空分辨率地面气象要素数据集的建立[D].北京: 中国科学院青藏高原研究所, 1-78.
[30]胡隐樵, 高由禧, 王介民, 等, 1994.黑河实验(HEIFE)的一些研究成果[J].高原气象, 13(3): 225-236.
[31]季国良, 1999.青藏高原能量收支观测实验的新进展[J].高原气象, 18(3): 333-340.
[32]季国良, 1985.青藏高原主体的大气透明度特征[J].高原气象, 4(2): 122-129.
[33]季国良, 吕兰芝, 1995.藏北高原太阳辐射能收支的季节变化[J].太阳能学报, 16(4): 340-346.
[34]李黎, 吕世华, 范广洲, 2019.夏季青藏高原地表能量变化对高原低涡生成的影响分析[J].高原气象, 38(6): 1172-1180.DOI: 10.7.522 /j.issn.1000-0534.2018.00154.
[35]李明财, 罗天祥, 郭军, 等, 2008.藏东南高山林线冷杉原始林土壤热通量[J].山地学报, 26(4): 490-495.DOI: 10.3969/j.issn.1008-2786.2008.04.017.
[36]李宏毅, 肖子牛, 朱玉祥, 2018.藏东南地区草地下垫面湍流通量和辐射平衡各分量的变化特征[J].高原气象, 37(4): 923-935.DOI: 10.7252/j.issn.1000-0534.2017.2007.
[37]刘宏谊, 杨兴国, 张强, 等, 2009.敦煌戈壁冬夏季地表辐射与能量平衡特征对比研究[J].中国沙漠, 29(3): 558-565.
[38]马伟强, 马耀明, 胡泽勇, 等, 2005a.藏北高原地区辐射收支和季节变化与卫星遥感的对比分析[J].干旱区资源与环境, 1: 110-116.DOI: CNKI: SUN: GHZH.0.2005-01-021.
[39]马伟强, 马耀明, 李茂善, 等, 2005b.藏北高原地区地表辐射出支和能量平衡的季节变化[J].冰川冻土, 27(5): 673-679.http: //.
[40]沈志宝, 成天涛, 王可丽, 2002.青藏高原地面-对流层系统的能量收支[J].高原气象, 21(6): 20-25.
[41]覃志豪, 李文娟, 徐斌, 等, 2004.陆地卫星TM6波段范围内地表比辐射率的估计[J].国土资源遥感, 15(3): 28-32.
[42]陶诗言, 陈联寿, 徐祥德, 等, 1998.第二次靑藏高原大气科学试验理论硏究进展(一) [M].北京: 气象出版社, 1-348.
[43]吴国雄, 2004.我国青藏高原气候动力学研究的近期进展[J].第四纪研究, 24(1): 1-9.
[44]翁笃鸣, 高歌, 2001.利用卫星资料试作青藏高原地表净辐射场的气候反演[J].气象科学, 21 (2): 162-168.DOI: 10.3969/j.issn.1009-0827.2001.02.005.
[45]肖瑶, 赵林, 李韧, 等, 2011.青藏高原腹地高原多年冻土区能量收支各分量的季节变化特征[J].冰川冻土, 33(5): 79-85.
[46]杨成, 姚济敏, 赵林, 等, 2016.藏北高原多年冻土区地表反照率时空变化特征[J].冰川冻土, 38(6): 1518-1528.
[47]杨丽薇, 高晓清, 惠小英, 等, 2017.青藏高原中部聂荣亚寒带半干旱草地近地层湍流特征研究[J].高原气象, 36(4): 875-885.DOI: 10.7522 /j.issn.1000-0534.2016.00089.
[48]叶笃正, 高由禧, 等, 1979.青藏高原气象学[M].北京: 科学出版社, 30-55.
[49]章基嘉, 朱抱真, 朱福康, 等, 1988.青藏高原气象学进展[M].北京: 科学出版社, 92-123.
[50]仲雷, 马耀明, 马伟强, 等, 2006.珠峰北坡地区近地层大气湍流与地气能量交换特征[J].地球科学进展, 12: 84-94.
[51]仲雷, 马耀明, 马伟强, 等, 2011.西藏中部“一江两河”地区地表通量的卫星遥感估算[J].冰川冻土, 33(2): 309-317.
[52]朱志鹍, 马耀明, 胡泽勇, 等, 2015.青藏高原那曲高寒草甸生态系统CO2净交换及其影响因子[J].高原气象, 34(5): 1217-1223.DOI: 10.7522/j.issn.1000-0534.2014.00135.