Using observed data of snowfall processes at Maqin micro meteorological observation, Qinghai, the influence of snow cover on soil temperature, soil moisture, soil heat flux and surface energy exchange were discussed.The results show that shallow soil temperature is more sensitive to snow cover.Snow cover has no effect on deep soil temperature.Daily average of shallow soil temperature rises, daily range of shallow soil temperature decreases, daily minimum of shallow soil temperature rises and absolute value of shallow soil temperature gradient decreases while snow covered.Snow cover has no effect on soil moisture when soil is completely frozen.When soil is melting, daily range of shallow soil moisture decreases while snow covered and deep soil moisture is not influenced.Daily range of shallow soil heat flux decreases while snow covered.In sunny days with the same total radiation, because of high snow albedo while snow covered, upward shortwave radiation increases, net radiation decreases, sensible heat flux decreases, latent heat flux increases, H/Rn decreases and LE/Rn increases.
[1]Cohen J, Rind D, 1991.The effect of snow cover on the climate[J].Journal of Climate, 4(7): 689-706.
[2]Dickinson R E, 1983.Land surface processes and climate-surface albedos and energy balance[J].Advances in Geophysics, 25: 305-353.
[3]Hall A, Qu X, Neelin J D, 2008.Improving predictions of summer climate change in the United States[J].Geophysical Research Letters, 35(1), L01702.DOI: 10.1029/2007GL032012.
[4]Harding R J, Pomeroy J W, 1996.The energy balance of the winter boreal landscape[J].Journal of Climate, 9(11): 2778-2787.
[5]Hedstrom N R, Pomeroy J W, 1998.Measurements and modelling of snow interception in the boreal forest[J].Hydrological Processes, 12(10/11): 1611-1625.
[6]Kaimal J C, Finnigan J J, 1994.Atmospheric boundry layer flows: Their structure and measurement[M].New York: Oxford University Press.
[7]Li X, Paul D, 2013.Snow-atmosphere coupling strength.Part II: Albedo effect versus hydrological effect[J].Journal of Hydrometeorology, 14(2): 404-418.DOI: 10.1175/JHM-D-11-0103.1
[8]Luce C, Tarboton D, Cooley K, 1998.The influence of the spatial distribution of snow on basin-averaged snowmelt[J].Hydrological Processes, 12(10/11): 1671-1683.
[9]Male D, Granger R, 1981.Snow surface energy exchange[J].Water Resources Research, 17(3): 609-627.
[10]Marks D, Reba M, Pomeroy J, al et, 2008.Comparing simulated and measured sensible and latent heat fluxes over snow under a pine canopy to improve an energy balance snowmelt model[J].Journal of Hydrometeorology, (9)6: 1506-1522.
[11]Marks D, Winstral A, 2001.Comparison of snow deposition, the snow cover energy balance, and snowmelt at two sites in a semiarid mountain basin[J].Journal of Hydrometeorology, 2(3): 213-227.
[12]Moore C J, 1986.Frequency response corrections for eddy correlation system[J].Boundary-Layer Meteorology, 37(1-2): 17-35.
[13]Mote T L, 2008.On the role of snow cover in depressing air temperature[J].Journal of Applied Meteorology and Climatology, 47(7): 2008-2022.
[14]Pomeroy J W, Toth B, Granger R J, al et, 2003.Variation in surface energetics during snowmelt in a subarctic mountain catchment[J].Journal of Hydrometeorology, 4(4): 702-719.
[15]Schotanus P, Nieuwstadt F T M, Debruin H A R, 1983.Temperature measurement with a sonic anemometer and its application to heat and moisture fluctuations[J].Boundary-Layer Meteorology, 26(1): 81-93.
[16]Tribbeck M J, Gurney R J, Morris E M, al et, 2004.A new Snow-SVAT to simulate the accumulation and ablation of seasonal snow cover beneath a forest canopy[J].Journal of Glaciology, 50(169): 171-182.
[17]Webb E K, Pearman G I, Leuning R, 1980.Correction of the flux measurements for density effects due to heat and water vapour transfer[J].Quarterly Journal of the Royal Meteorological Society, 106(447): 85-100.
[18]边晴云, 吕世华, 陈世强, 等, 2016.黄河源区降雪对不同冻融阶段土壤温湿变化的影响[J].高原气象, 35(3): 621-632.DOI: 10.7522/j.issn.1000-0534.2016.00029.
[19]高培, 魏文寿, 刘明哲, 2012.中国西天山季节性积雪热力特征分析[J].高原气象, 31(4): 1074-1080.
[20]葛红星, 张宏升, 罗帆, 等, 2016.华北地区冬小麦田水热、 二氧化碳和甲烷湍流输送特征的实验研究[J].地球物理学报, 59(4): 1235-1248.DOI: 10.6038/cjg20160406.
[21]金会军, 孙立平, 王绍令, 等, 2008.青藏高原中、 东部局地因素对地温的双重影响(I): 植被和雪盖[J].冰川冻土, 30(4): 535-545.
[22]李丹华, 文莉娟, 隆霄, 等, 2017.积雪对玛曲局地微气象特征影响的观测研究[J].高原气象, 36(2): 330-339.DOI: 10.7522/j.issn.1000-0534.2016.00074.
[23]李丹华, 文莉娟, 隆霄, 等, 2018.黄河源区玛曲3次积雪过程能量平衡特征[J].干旱区研究, 35(6): 1327-1335.DOI: 10. 13866/j.azr.2018.06.09.
[24]陆恒, 魏文寿, 刘明哲, 等, 2015.融雪期天山西部森林积雪表面能量平衡特征[J].山地学报, 33(2), 173-182.DOI: 10.16089/j.cnki.1008-2786.000023.
[25]吴统文, 钱正安, 宋敏红, 2004a.CCM3模式中LSM积雪方案的改进研究(Ⅰ): 修改方案介绍及其单点试验[J].高原气象, 23(4): 444-452.
[26]吴统文, 钱正安, 蔡英, 2004b.CCM3模式中LSM积雪方案的改进研究(Ⅱ): 全球模拟试验分析[J].高原气象, 23(5): 569-579.
[27]徐自为, 刘绍民, 徐同仁, 等, 2009.涡动相关涡动相关仪观测蒸散量的插补方法比较[J].地球科学进展, 24(4): 372-382.
[28]严晓强, 胡泽勇, 孙根厚, 等, 2019.那曲高寒草地长时间地面热源特征及其气候影响因子分析[J].高原气象, 38(2): 253-263.DOI: 10.7522/j.issn.1000-0534.2018.00091.
[29]杨清华, 刘骥平, 孙启振, 等, 2013.2010年春季南极固定冰反照率变化特征及其影响因子[J].地球物理学报, 56(7): 2177-2184.DOI: 10.6038/cjg20130705.
[30]岳平, 张强, 赵文, 等, 2015.黄土高原半干旱草地生长季干湿时段环境因子对陆面水、 热交换的影响[J].中国科学(D辑): 地球科学, 45(8): 1229-1242.DOI: 10.1007/s11430-015-5133-3.
[31]曾剑, 张强, 2012.2008年7-9月中国北方不同下垫面晴空陆面过程特征差异[J].气象学报, 70(4): 821-836.
[32]张强, 孙昭萱, 王胜, 2011.黄土高原定西地区陆面物理量变化规律研究[J].地球物理学报, 54(7): 1727-1737.
[33]张强, 王蓉, 岳平, 等, 2017.复杂条件陆-气相互作用研究领域有关科学问题探讨[J].气象学报, 75(1): 39-56.DOI: 10. 11676/qxxb2017.003.
[34]张强, 曾剑, 张立阳, 2012.夏季风盛行期中国北方典型区域陆面水、 热过程特征研究[J].中国科学(地球科学), 42(9): 1385-1393.