Using the 24 h and 1 h precipitation data of 785 automatic weather stations provided by the Inner Mongolia Autonomous Region Meteorological Information Center and the Ordos (CINRAD/CB) Doppler radar data from the Hetao area of Inner Mongolia, the FNL of NECP (1°×1°) 6 h reanalysis data and global topographic (1°×1°) data, we analyzed the torrential rainstorm in Hetao area, Inner Mongolia from 18 to 19 July 2018.The results show that the stable and less moving subtropical high with its northwest trough at 500 hPa, the “herringbone” shaped shear line in middle and lower level, and low-level jet are the main background.The condition of water vapor during the rainstorm period presents strong southwest branch water vapor transport and vertical convergence ascending motion, and water vapor flux intensity center develops up to 700 hPa with vertical convergence of water vapor flux rising to 500 hPa.The “train effect” disturbances induced by the orographicforcing of the Yinshan mountain continuously and propagating over the rainstorm area, which are characterized by significant east-west axial band echoes in Radar reflectivity, is the key of the dynamic process for the persistent rainstorm.Furthermore, the quasi-positive pressure instability structure with the positive vorticity center and the negative divergence center coincide over the rainstorm area exacerbates the development of convective instability.
Guilian ZHANG
,
Yuehe HANG
,
Lijuan FU
,
Lu ZHANG
,
Fuxiang BAO
. Causes of a Torrential Rainstorm Induced by “Train Effect” in Hetao Area[J]. Plateau Meteorology, 2020
, 39(4)
: 788
-795
.
DOI: 10.7522/j.issn.1000-0534.2019.00122
[1]Doswell C A, Harold E B, Robert A M, 1996.Flash flood forecasting: An ingredients-based methodology[J].Weather and Forecasting, 11(4): 560-581.
[2]谌芸, 孙军, 徐珺, 等, 2012.北京721特大暴雨极端性分析及思考(一)观测分析及思考[J].气象, 38(10): 1255-1266.DOI: 10. 7519/j.issn, 1000-0526.2012.10.012.
[3]丁一汇, 1994.暴雨和中尺度气象学问题[J].气象学报, 52(3), 274-284.DOI: 10.11676/qxxb1994.036.
[4]方翀, 毛冬艳, 张小雯, 等, 2012.2012年7月21日北京地区特大暴雨中尺度对流条件和特征初步分析[J].气象, 38(10): 1278-1287.DOI: 10.7519/j.issn.1000-0526.2012.10.014.
[5]韩国泳, 李兰兰, 荆涛, 等, 2016.鲁中山区一次漏报的强对流天气过程中地形触发作用分析[J].干旱气象, 34(3): 540-546.DOI: 10.11755/ j.issn.1006-7639(2016)-03-0540.
[6]刘蕾, 张凌云, 李家文, 2015.中尺度地形对柳州一次大暴雨过程影响的数值试验[J].暴雨灾害, 34(1): 74-79.DOI: 10.3969/j.issn.1004-9045.2015.01.010.
[7]漆梁波, 徐珺, 2018.豫北“7·9”特大暴雨的短期预报分析和反思[J].气象, 44(1): 1-14.DOI: 10.7519/j.issn.1000-0526. 2018.01.001.
[8]孙继松, 雷蕾, 于波, 等, 2015.近10年北京地区极端暴雨事件的基本特征[J].气象学报, 73(4): 609-623.DOI: 10.11676/qxxb2015.044.
[9]孙军, 谌芸, 杨舒楠, 等, 2012.北京721特大暴雨极端性分析及思考(二)极端性降水成因初探及思考[J].气象, 38(10): 1267-1277.DOI: 10.7519/j.issn, 1000-0526.2012.10.013.
[10]汤鹏宇, 何宏让, 阳向荣, 等, 2015.北京“7·21”特大暴雨中的干侵入分析研究[J].高原气象, 34(1): 210-219.DOI: 10.7522/j.issn.1000-0534.2013.00128.
[11]陶祖钰, 2011.基础理论与预报实践[J].气象, 37(2): 129-135.DOI: 10.7519/j.issn, 1000-0526.2011.2.001.
[12]万明波, 孟宪贵, 刁秀广, 2015.山东极端强降雨风暴传播类型及流场结构特征[J].高原气象, 34(6): 1741-1750.DOI: 10. 7522/j.issn.1000-0534.2015.00012.
[13]王宝鉴, 孔祥伟, 傅朝, 等, 2016.甘肃陇东南一次大暴雨的中尺度特征分析[J].高原气象, 35(6): 1551-1564.DOI: 10.7522/j.issn.1000-0534.2015.00114.
[14]王伏村, 许东蓓, 姚延锋, 等, 2016.一次陇东大暴雨的锋生过程及倾斜涡度发展[J].高原气象, 35(2): 419-431.DOI: 10.7522/j.issn.1000-0534.2014.00127.
[15]王华, 李宏宇, 仲跻芹, 等, 2019.京津冀一次罕见的双雨带暴雨过程成因分析[J].高原气象, 38(4): 856-871.DOI: 10.7522/j.issn.1000-0534.2018.00102.
[16]杨磊, 蒋大凯, 王瀛, 等, 2017.“8.16”辽宁特大暴雨多尺度特征分析[J].干旱气象, 359(2): 267-274.DOI: 10.11755/j.issn. 1006-7639 (2017)-02-0267.
[17]俞小鼎, 2013.短时强降水临近预报的思路与方法[J].暴雨灾害, 32(3): 202-209.DOI: 10.3969/j.issn, 1004-9045.2013. 03.002.
[18]俞小鼎, 2012.2012年7月21日北京特大暴雨成因分析[J].气象, 38(11): 1313-1329.DOI: 10.7519/j.issn, 1000-0526.2012. 11.001.
[19]张芹, 王洪明, 张秀珍, 等, 2018.2017年山东雨季首场暖区暴雨的特征分析[J].高原气象, 37(6): 1696-1704.DOI: 10.7522/j.issn.1000-0534.2018.00052.
[20]张桂莲, 常欣, 黄晓璐, 等, 2018a.东北冷涡背景下超级单体风暴环境条件与雷达回波特征[J].高原气象, 37(5): 1364-1374.DOI: 10.7522/j.issn.1000-0534.2018.00068.
[21]张桂莲, 赵艳丽, 黄晓璐, 等, 2019.“9.24”内蒙古东南部致灾飑线过程成因分析[J].暴雨灾害, 38(1): 41-47.DOI: 10.3969/j.issn, 1004-9045.2019.01.005.
[22]张桂莲, 仲夏, 韩经纬, 等, 2018b.内蒙古中西部地区一次极端大暴雨特征分析[J].干旱气象, 36(1): 17-26.DOI: 10.11755/j.issn.1006-7639(2018)-01-0017.
[23]赵庆云, 傅朝, 刘新伟, 等, 2017.西北东部暖区大暴雨中尺度系统演变特征[J].高原气象, 36(3): 697-704, DOI: 10.7522/j.issn.1000-0534.2016.00140.
[24]赵淑芳, 张立文, 王倩, 等, 2017.山东极端强降雨分钟雨量、 Z-R关系和风暴结构演变特征[J].干旱气象, 35(5): 806-814.DOI: 10.11755/j.issn.1006-7639(2017)-05-0806.
[25]赵思雄, 孙建华, 鲁蓉, 等, 2018.“7·20”华北和北京大暴雨过程的分析[J].气象, 44(3): 351-360.
[26]赵玉春, 许小峰, 崔春光, 2012.中尺度地形对梅雨锋暴雨影响的个例研究[J].高原气象, 31(5): 1268-1282.