Based on conventional observations and the FNL reanalysis data, this paper analyzes the relationship between the rainfall characteristics and the circulation of a cold vortex during different phases for the strongest cold vortex associated rainstorm in recent 10 years over the northeast China.In general, the rainfall distribution is closely related to the dynamical and thermal conditions and water vapor distribution in a cold vortex process.The cold vortex process can be divided into four phases, the formation, developing, mature, and dissipating phase, respectively.In the formation phase, the precipitation is mainly confined in the area with strong vertical movement, but the precipitation rate is small.In the developing phase, the baroclinic condition is strong.Over the front part of the cold vortex there are strong dry and cold advections in the upper level and warm and wet advections in the lower level.Intensive rainfall is mainly distributed in the front of the cold vortex where the convergence is the strongest.The precipitation rate shows a direct proportional relationship to the strength and vertical velocity of the convergence center in the lower level.In the mature phase, the cold vortex is quasi-barotropic.The intensity and range of the vertical velocity are the largest, the precipitation is widely distributed in the center and front of the cold vortex.The precipitation center moves towards the center of the cold vortex, and its intensity is similar to that during the developing phase.The precipitation distribution is more related to the distribution of unstable energy and dry cold air than to the dynamical conditions.In the dissipating phase, the precipitation is scattered and its intensity decreases rapidly, and its relationship with circulation and other conditions is no longer significant.For this case, the convergence of water vapor from the south, west and east played an essential role in the evolution of the cold vortex.The inflow of water vapor from the south was the main water vapor source for the strong rainstorm.There was significant positive correlation between the net inflow of water vapor and the intensity of precipitation.
[1]Zhen Z, Lei H C, 2014.Observed microphysical structure of nimbostratus in northeast cold vortex over China [J].Atmospheric Research, 142: 91-99.
[2]白人海, 金瑜, 1993.黑龙江省暴雨之研究[M].北京: 气象出版社, 217.
[3]白人海, 1997.东北冷涡加密观测事实的分析[J].黑龙江气象(4): 1-3.
[4]陈力强, 陈受钧, 周小珊, 等, 2005.东北冷涡诱发的一次 MCS 结构特征数值模拟[J].气象学报, 63(2): 173-183.
[5]陈力强, 张立祥, 周小珊, 2008.东北冷涡不稳定能量分布特征及其与降水落区的关系[J].高原气象, 27(2): 339-348.
[6]邓涤菲, 周玉淑, 王东海, 2012.有限区域分解分析方法在2006年一次东北冷涡暴雨分析中的应用[J].地球物理学报, 55(6): 1852-1866.
[7]傅慎明, 孙建华, 张敬萍, 等, 2015.一次引发强降水的东北冷涡的演变机理及能量特征研究[J].气象, 41(5): 554-565.
[8]胡开喜, 2010.东北冷涡的气候特征变异及其气候效应[D].北京: 中国科学院研究生院.
[9]黄秀娟, 朱其文, 刘实, 1997.东北冷涡研究文集[M].沈阳: 辽宁出版社, 30-34.
[10]刘英, 王东海, 张中锋, 等, 2012.东北冷涡的结构及其演变特征的个例综合分析[J].气象学报, 70(3): 354-370.
[11]马梁臣, 孙力, 王宁, 2017.东北地区典型暴雨个例的水汽输送特征分析[J].高原气象, 36(4): 960-970.DOI: 10.7522/j.issn. 1000-0534.2016.00078.
[12]齐彦斌, 陶玥, 洪延超, 等, 2012a.东北冷涡中尺度云系降水机制研究Ⅰ: 观测分析[J].气候与环境研究, 17(6): 683-692.
[13]齐彦斌, 陶玥, 冉令坤, 等, 2012b.东北冷涡中尺度云系降水机制研究Ⅱ: 数值模拟[J].气候与环境研究, 17(6): 797-808.
[14]沈浩, 杨军, 祖繁, 等, 2014.干空气入侵对东北冷涡降水发展的影响[J].气象, 40(5): 562-569.
[15]孙永罡, 于振东, 王明洁, 等, 1997.东北冷涡的Q矢量诊断分析[J].黑龙江气象,14(3): 9-10.
[16]孙力, 安刚, 高枞亭, 等, 2002.1998年夏季嫩江和松花江流域东北冷涡暴雨的成因分析[J].应用气象学报, 13(2): 156-162.
[17]孙力, 王琪, 唐晓玲, 1995.暴雨类冷涡与非暴雨类冷涡的合成对比分析[J].气象, 21(3): 7-10.
[18]斯公望, 1988.暴雨和强对流环流系统[M].北京: 气象出版社, 350.
[19]孙颖姝, 王咏青, 沈新勇, 等, 2018.一次“大气河”背景下东北冷涡暴雨的诊断分析[J].高原气象, 37(4): 970-980.DOI: 10. 7522/j.issn.1000-0534.2018.00005.
[20]陶诗言, 1980.中国之暴雨[M].北京: 科学出版社, 225.
[21]王宁, 王秀娟, 张硕, 等, 2016.吉林省一场持续性暴雨成因及MCC特征分析[J].气象, 42(7): 809-818.
[22]王培, 沈新勇, 高守亭, 2012.一次东北冷涡过程的数值模拟与降水分析[J].大气科学, 36(1): 130-144.
[23]王宗敏, 李江波, 王福侠, 等, 2015.东北冷涡暴雨的特点及其非对称结构特征[J].高原气象, 34(6): 1721-1731.DOI: 10.7522/j.issn.1000-0534.2014.00084.
[24]吴迪, 楚志刚, 闫立奇, 2015.东北冷涡发展过程的位涡收支分析[J].高原气象, 34(1): 103-112.DOI: 10.7522/j.issn.1000-0534.2013.00121.
[25]吴迪, 姚秀萍, 寿绍文, 2010.干侵入对一次东北冷涡过程的作用分析[J].高原气象, 29(5): 1208-1217.
[26]徐祥德, 陈联寿, 王秀荣, 等, 2003.长江流域梅雨带水汽输送源-汇结构[J].科学通报, 48(21): 2288-2294.
[27]袁美英, 李泽椿, 张小玲, 2010.东北地区一次短时大暴雨<i>β</i>中尺度对流系统分析[J].气象学报, 68(1): 125-136.
[28]张桂莲, 常欣, 黄晓璐, 等, 2018.东北冷涡背景下超级单体风暴环境条件与雷达回波特征[J].高原气象, 37(5): 1364-1374.DOI: 10.7522/j.issn.1000-0534.2018.00068.
[29]张云, 雷恒池, 钱贞成, 2008.一次东北冷涡衰退阶段暴雨成因分析[J].大气科学, 32(3): 481-497.
[30]郑秀雅, 张廷治, 白人海, 1992.东北暴雨[M].北京: 气象出版社, 219.
[31]钟水新, 2011a.东北冷涡结构特征及其强降水形成机理研究[D].北京: 中国气象科学研究院.
[32]钟水新, 王东海, 张人禾, 等, 2011b.一次东北冷涡降水过程的结构特征与影响因子分析[J].高原气象, 30(4): 951-960.
[33]钟水新, 王东海, 张人禾, 等, 2013.一次冷涡发展阶段大暴雨过程的中尺度对流系统研究[J].高原气象, 32(2): 2435-2445.DOI: 10.7522/j.issn.1000-0534.2012.00042.